
Prefetching Techniques for STT-RAM based Last-level Cache

in CMP Systems�

Mengjie Mao, Guangyu Sun†,Yong Li, Alex K. Jones, Yiran Chen

University of Pittsburgh, Pittsburgh, PA 15261, USA
†CECA, Peking University

{mem231, yol26, akjones, yic52}@pitt.edu, †gsun@pku.edu.cn

Abstract—Prefetching is widely used in modern computer systems to
mitigate the impact of long memory access latency by paying extra
cost in memory and cache accesses. However, the efficacy of prefetching
significantly degrades in the memory hierarchy using the emerging spin-
transfer torque random access memory (STT-RAM) as last-level cache
(LLC) due to the long write access latency. In this work, we propose
two orthogonal but complimentary techniques to improve the prefetching
efficacy of STT-RAM based LLC in chip multi-processor (CMP) systems,
namely, request prioritization (RP) and hybrid local-global prefetch
control (HLGPC). Simulation results show that by combining these two
techniques, we can achieve 6.5%∼11% system performance improvement
and 4.8%∼7.3% LLC energy saving in a quadcore system with a
2MB∼8MB STT-RAM based LLC, compared to the system with only
basic prefetching.

I. INTRODUCTION

Prefetching technique [1], [6] is widely adopted in modern com-

puter systems to alleviate the impact of long memory access latency.

Data is pre-loaded into a cache based on run-time prediction before

it is actually requested. The memory access latency is hidden though

extra burdens are imposed on the traffic from the memory to the

cache. Potential access conflicts, e.g., bank access contention and

cache pollution, may be introduced.

Very recently, spin-transfer torque random access memory (STT-

RAM) gains increasing attentions in on-chip cache implementa-

tion [16]. Compared to SRAM, STT-RAM has nearly zero leakage

power consumption, much higher cell density, and similar read

performance. However, the long write latency and high write energy

primarily impede the adoption of STT-RAM as last-level cache

(LLC). Although write performance can be improved by raising write

current, the storage density must be sacrificed because a large-size

driving transistor is required.

In a chip multi-processor (CMP) system with prefetching, LLC

commonly serves prefetch requests (writes) besides common ac-

cesses. The introduction of STT-RAM based LLC results in some

potential adverse impacts on the system performance and energy:

For a LLC built with high-density/small-size STT-RAM cells, the

long write access latency increases the possibility of bank access

conflicts; for a LLC built with low-density/large-size STT-RAM cells,

the limited LLC capacity makes the system more sensitive to the

prefetching-incurred cache pollution, causing the increases in cache

miss rate and the number of write accesses.

In this work, we propose two orthogonal but complimentary

techniques to mitigate the impacts of long write latency of STT-RAM

based LLC on the performance of the CMP systems with aggressive

prefetching. The first technique is named as request prioritization
(RP) where different access types of LLC are prioritized based on

their criticality to the system performance. Requests with low priority

may be preempted by the ones with higher priority during executions.

A hybrid local-global prefetch control (HLGPC) mechanism is then

�This work is supported in part by NSF awards CNS-1116171, NSF of
China (No. 61202072), and National High-tech R&D Program of China (No.
2013AA013201).

introduced to dynamically tune the aggressiveness of prefecher for

alleviating the LLC access contention.

Compared to the existing works on the memory hierarchy built

with STT-RAM, our two major contributions are:

• We quantitatively analyze the degradation of prefetching efficacy

in the CMP systems with STT-RAM based LLC.

• Two complimentary techniques – RP and HLGPC are inno-

vated to mitigate the adverse impacts of aggressive prefetching

on CMP systems, achieving substantial performance speedup and

energy saving under different cache design configurations.

To the best of our knowledge, this is the first work quanti-

tatively analyzing the impact of adopting STT-RAM as LLC on

the prefetching efficacy of CMP systems. Simulation results show

that the combination of RP and HLGPC techniques can achieve

6.5%∼11% system performance improvement (geometric mean) as

well as 4.8%∼7.3% LLC energy saving for a quadcore system with

2MB∼8MB STT-RAM based LLC.

The rest of our paper is organized as follows: Section II gives a

review of STT-RAM based LLC design and the recent prefetching

efficacy enhancement techniques; Section III depicts the motivations

of our work; Section IV shows the implementation details on the RP
and HLGPC; Section V presents our experiment setup; Section VI

shows the simulation results; Section VII concludes our work.

II. BACKGROUND

A. STT-RAM based LLC

The most popular STT-RAM cell design is “1T1J”, which contains

one magnetic tunneling junction (MTJ) device connected with an

access transistor. The resistance of the MTJ can be switched between

high- and low-state when a current with different polarization is

applied. The MTJ switching can be speeded up by raising the

switching current. However, it needs to enlarge the NMOS transistor

size and results in the increase of the cell area. Table 1 shows the

parameters of three STT-RAM cache designs built with the access

transistors with different driving abilities; all parameters are extracted

from NVSim [15]. When the MTJ switching time is 3ns, 10ns,

and 30ns, the corresponding STT-RAM cell area is about 71F 2,

25F 2, and 15F 2, respectively. Here F is the feature size fabrication

technology, say, 45nm here.

TABLE I: The timing and energy parameters of 2/4/8MB STT-RAM
LLC at 45nm technology

2MB 4MB 8MB

Write Read Write Read Write Read

Timing(ns)
Pulse 3

3.82
10

3.06
30

4.04
Peripheral 1.69 1.75 2.07

Cell area(F 2) 71 25 15

Dynamic energy(nJ) 1.268 0.77 1.08 0.877 1.310 1.197

Memory area(mm2) 10.429 9.733 10.163

Leakage power(mW) 924.7 800.4 859.0

Dong et al. first proposed using STT-RAM to implement LLC

in microprocessors and discovered its advantages on leakage power

reduction [14]. Sun et al. extended STT-RAM based LLC design

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 67

1C-1

2MB 4MB 8MB
0

10

20

30

40
1.29

1.41

1.53
1.61

1.30

1.26

A
ve

ra
g

e
w

ai
ti

n
g

 c
yc

le
s/

ac
ce

ss read waiting cycles
 fill waiting cycles
 write back waiting cycles

1.59

2MB 4MB 8MB
0%

10%

20%

30%

%
 in

cr
ea

se
 o

f
re

q
u

es
t

 total
 write

1.52

1.39

(b)(a)

Fig. 1: (a) The increase of total LLC access requests and write requests
after applying prefetching; (b) The average waiting cycles of different
types of LLC accesses (values atop each bar are normalized to the results
without prefetching).

to CMP systems and identified the negative impacts of long write

latency of STT-RAM on the system performance [5]. A read-

preemptive write buffer, which allows the read request to preempt the

write back request that is accessing the same cache bank, was also

proposed to alleviate the blocking effect of the write access to STT-

RAM based cache. The reliability of STT-RAM read/write operation

has been well studied [18], [13], [12] promising the installation of

STT-RAM on modern microprocessor design.

B. Prefetching Efficacy Enhancement

The inaccuracy of data prefetcher introduces significant memory

resource wasting and degrades system performance. For example,

inaccurate prefetch requests incur excessive write accesses to the

LLC, which compete with normal LLC requests. As a result, the

induced cache pollution and the increased cache miss rate trigger

more LLC requests and further aggravate the competition among the

requests. In [11], [17], filter techniques are proposed to dynamically

tune the prefetch requests based on the prefetech accuracy while a

hardware-based cache pollution filter is constructed for the prefetcher.

If the predicted accuracy of a particular prefetch request is lower

than a preset threshold, the corresponding request will be prevented

from being issued. In [2], [9], the aggressiveness of prefetchers,

i.e., the prefetch degree1 and prefetch distance2, is dynamically

adjusted based on the real-time system feedback information like

temporal accuracy, prefetch timeliness, cache pollution, and memory

bandwidth utilization. These techniques are traditionally applied to

shared main memory in the presence of multiple prefetchers.

III. TECHNICAL MOTIVATION

Figure 1(a) shows the increases in the total LLC access requests

and the write requests after applying prefetching to a STT-RAM based

LLC with a capacity of 2MB, 4MB, and 8MB, respectively, compared

to the case that no prefetching is applied. The data is averaged over

six workloads, each of which consists of 4 different applications

running simultaneously on a quadcore CMP (more simulation setup

details will be given in Section V). As shown in Table I, all LLC

configurations have the similar areas (∼ 10mm2) but different

performances: large cache capacity is associated with long write

access latency due to the small transistor size. The shortest read

latency, which is the sum of delays on memory array and peripheral

circuits, happens in the 4MB LLC design. Figure 1(b) depicts the

average waiting cycles of each types of LLC access requests caused

by cache bank access conflicts after prefetching is applied. Based on

Figure 1(a) and (b), we made the following observations:

• With prefetching, the numbers of total access requests as well as

write requests climb up, followed by the increase in the waiting

1# of prefetch requests that can be issued in one access.
2The range that the prefetch requests locate into.

Core_0 Core_n

$ prefetcher prefetcher $

LLC
Write
buffer

Write back
Read

Coherence Op.

Prefetch

……

LLC
MSHR

Fill

Write back

Main memory

Read

Prefetch fill

Fig. 2: Access types of the shared LLC in CMP systems.

time for all types of access requests. As the capacity of LLC

increases, the average waiting time of all types of access requests

keeps raising due to the prolonged write access latency. Figure 1

(b) also show that read requests and fill requests, which are

commonly located on the critical path of execution, experience

much longer waiting time compared to the less critical requests,

e.g., write back. Therefore, the system performance may be

potentially improved by assigning higher priority to the critical

LLC access requests during execution to avoid long waiting time.

• The prefetching efficiency is affected by the capacity (cell size)

of STT-RAM based LLC. A large cell size helps to shorten the

average waiting time of the LLC access requests by reducing the

blocking time of write operations. However, the cache pollution

incurred by prefetching also becomes severer due to the reduced

total capacity. On the contrary, the average waiting time of the

LLC access requests rises when the LLC capacity increases. The

system performance is determined by the tradeoffs among the

write request frequency, the average waiting time (or the LLC

access conflicts), and the prefetching policy, all of which vary

during the execution of a program. Hence, we may dynamically

throttle the aggressiveness of prefetchers for system performance

improvement by taking into account all these factors.

IV. PROPOSED TECHNIQUES
A. Request Prioritization (RP)

Figure 2 summarizes the common LLC access requests in a CMP

system: read requests, coherence requests3 and write back requests are

initiated by the upper-level cache of each CPU core; prefetcher sends

the prefetch requests to the main memroy and fills the corresponding

data into the LLC. If the read request to the LLC encounters a

cache miss, a fill request will be generated to fetch the data from

the main memory to the LLC. Consequently, the following accesses

to the corresponding cache bank of the STT-RAM based LLC may

be blocked due to long write latency of memory cells, leading to a

bank access conflict.

Notice that these LLC access requests shown in Figure 2 demon-

strate different criticality to the system performance. For example,

read requests must be handled immediately as the cache miss at

upper-level cache significantly affects the system performance. Fill

requests are also critical since they are triggered by LLC misses,

especially if the requested data is loaded into LLC first before it

is sent to upper-level cache for consistency. Prefetch fill requests,

however, have lower criticality because the prefetched data is unlikely

to be used immediately. Write back requests apparently have the

lowest criticality because the data written back to the LLC may not

be used in the near future.

3Most cache coherence protocols only modify the states stored in the tag ar-
ray/directory that is highly banked, without accessing the data array. Thus, coherence
request is not included in our RP technique.

68

1C-1

from upper-level $

To LLC

Preempted, from LLC

Write buffer MSHR
counter

Data buffer

From LLC/prefetcher Preempted, from LLC

From memory, to LLC

1 3

2

1

3

2

counter

(a) (b)

Fig. 3: Implementation of RP with augmented components: (a) Write
back requests. (b) Fill and prefetch fill requests.

We proposed to prioritize the different types of LLC access

requests based on their criticality to the system performance, and

process the requests based on their priorities. For example, if multiple

requests compete the access to the same cache bank, the one with

the highest priority will be granted the right of access. However, a

request with a high priority may also be blocked by a low priority

request which is being processed. To address this issue, we allow

the high-priority request to preempt the low-priority one if the elapse

time of processing the low-priority request is below a threshold, say,

the retirement accomplishment degree (RAD) [5]. For example, a

30% RAD of write back request means that the write back request

can be preempted by a request with higher priority if the elapse time

of the LLC write back access is below 30% of the STT-RAM write

latency. We refer to this method as request prioritization (RP).

To record the elapse time of the LLC access request, each miss state
handling register (MSHR) or write buffer entry must be augmented

with a N -bit counter (e.g., 7-bit to record up to 128-cycle operation

time for an 8MB LLC). The counter is initialized once the associated

request grasps the access right of the cache bank, and reset after

the request is preempted or successfully processed. As shown in

Figure 3(a), when a write back request is preempted, the data being

written is still retained at the head of the write buffer and waiting

for the next try; otherwise, the buffer entry will be recycled once the

write back completes.

However, if a fill or prefetch fill request is preempted, the request

must be buffered for the future retry. As shown in Figure 3(b), besides

the elapse time counter, a data buffer whose length is the same as

one cache block is also augmented to the MSHR to buffer the data

associated with the fill/prefetech fill request. The procedure which is

similar to LLC miss handling can be applied to deal with the write

preemption: Once the request is issued, a MSHR is assigned to it

by LLC controller; the MSHR holds the data fetched from the main

memory until it is successfully written into the LLC; if the request is

preempted before the writing is completed, the request is buffered in

the MSHR and waiting for the next retry; otherwise, the MSHR will

be recycled after the writing is completed. Read requests will never

be preempted.

Preempting write request may cause false LLC states since the tag

array would be updated before the data array is updated. For instance,

a write request to the data array is preempted after modifying the

valid/dirty bits of the corresponding tag entry. If a read request ac-

cesses the same data entry before the retry of the write request, it may

actually access the old or invalid data. To avoid this inconsistency,

we define the policy that a write request cannot update the valid bit

in the tag entry until it successfully updates the data array. The read

request in the above example will trigger a cache miss which will be

filtered by the MSHR entry occupied by the preempted write request.

Similar to the scheme in [5], a 20-entry write buffer is adopted

in our design. To suppress the competition between the prefetch fill

requests and fill requests and avoid overflow, the number of MSHRs

must be sufficiently large, e.g., 128 in our simulated quadcare system.

The augmented storage is built with SRAM.

TABLE II: GPC decision guideline

Case
corei’s info LLC’s info

Decision
Pref. Acc. Pref. Freq. Acc. Freq.

1 High Low High Allow local

2 High High Low Allow local

3 High High High Disable scale up

4 High Low Low Allow local

5 Low Low High Disable scale up

6 Low High Low Allow local

7 Low High High Force scale down

8 Low Low Low Allow local

B. Hybrid Local-global Prefetch Ctrl (HLGPC)

As aforementioned in Section III, overaggressive prefetching in a

CMP system may cause cache pollution and aggravate the access

conflict of the shared memory resource [4]. This issue becomes

severer in the system with small LLC because prefetch fill requests

will have a higher probability to evict the useful cache blocks. The

increased LLC miss rate will generate more prefetches and eventually

put the system into a negative feedback loop. The general solutions

of this issue includes local (per core) prefetch control (LPC) [3],

[9] and prefetcher coordination by considering main memory access

contention [2], [4], which dynamically control the aggressiveness of

the prefetchers.

However, conventional LPC technique focuses on maximizing the

performance of each CPU core, which does not necessarily optimize

the overall system performance due to the LLC access conflicts

among the different prefetchers. Also, the significant access conflicts

in STT-RAM based LLC become another crucial factor affecting

the prefetching efficacy besides main memory access contention.

Based on the above observations, we propose hybrid local-global
prefetch control (HLGPC) technique to achieve a balanced dynamic

aggressiveness control across all prefetchers in a CMP system. The

two integrated components of HLGPC are:

Local prefetch control (LPC): At core-level, we choose feed-
back directed prefetching (FDP) [9] as the LPC scheme to manage

the aggressiveness of the prefetcher. FDP periodically samples the
prefetcher’s accuracy, prefetch timeliness and per-core-induced cache
pollution over every time interval and determines the aggressiveness

of the prefetcher in the next interval accordingly.

Global prefetch control (GPC): At chip-level, GPC may retain

or override the decision of LPC based on the runtime information of

LLC. GPC periodically samples the prefetch frequency of each core

and the global access frequency of LLC. Based on the values of these

two metrics and the prefetcher’s accuracy over the current interval,

GPC applies the following three rules on the prefetcher of each core

in the next interval, as shown in Table II.

• Disable scale up: In case 3, although the prefetch accuracy and

frequency are high for corei, the high global access frequency

of the LLC indicates the severe access conflicts. Therefore, the

scaling up of the prefetcher’s aggressiveness is disabled even

the LPC decides to do so. In case 5, continue scaling up the

prefetcher’s aggressiveness in corei will likely deteriorate access

conflicts due to high LLC access frequency and low prefetch

accuracy. Hence, the scaling up of the prefetcher’s aggressiveness

is also prevented;

• Force scale down: In case 7, low prefetch accuracy couples

with high prefetch frequency, indicating high volume of useless

prefetches. Considering the high global access frequency of the

LLC (or say, the severe access conflicts), GPC will force corei to

scale down the prefetcher’s aggressiveness regardless the decision

of LPC;

• Allow local decision: For the rest cases in Table II, GPC will

stick to the decision of LPC which ensures the best performance

69

1C-1

TABLE III: The aggressiveness levels of prefetchers
Aggressiveness Prefetch Distance Prefetch Degree

Very conservative 4 1

Conservative 8 2

Medium 16 4

Aggressive 32 4

Very aggressive 64 8

for each core as well as the overall system.

In our implementation of HLGPC, the design metrics like prefetch

frequency of corei and the global access frequency over interval i
are updated as [9]:

UpdatedCounti = 0.5 · UpdatedCounti−1 + 0.5 · CurrentCounti. (1)

Here UpdatedCounti is the metric over the current interval i while

UpdatedCounti−1 is the metric over the previous interval i − 1.

CurrentCounti denotes the number of the prefetch requests issued

by corei or the LLC accesses over the current interval i. Eq. (1)

gives the credits to the metrics over both the current and all previous

intervals and reflects the temporal correlation of the execution of the

workload. The threshold value of each GPC metric adopted in our

simulation will be shown in Section V-A.

V. EXPERIMENT SETUP
A. Simulation Platform

Without loss of generality, we adopt the stream prefetcher in

IBM POWER4 processor [6] in our simulation among the exisiting

prefetcher designs. The aggressiveness of stream prefetcher can

be dynamically adjusted among five configurations, as shown in

Table III. We also assume there is only one prefetcher per CPU core

in the simulated CMP system.

The MacSim [19] simulator with Intel’s Sandy Bridge configura-

tion is used in our evaluation. The design parameters of STT-RAM

based LLC at 45nm technology, which are summarized in Table I,

are obtained from NVsim [15] with the appropriate device parameters

in [7]. We also consider the energy overhead of the augmented write

buffer and MSHR while the energy parameters of these components

are extracted from CACTI [10] and Synopsys using VHDL. The

configuration of the simulated quadcore system is summarized in

Table IV. The length of an interval in the HLGPC scheme is set to

8192 evictions from LLC [9]. The threshold values for the high/low

prefetch accuracy, the prefetch frequency, and the global access

frequency are empirically set to 0.5, 246 and 8192, respectively. Total

four 13-bit counters are needed in each core to measure the prefetch

accuracy, the prefetch frequency, and the global access frequency of

LLC (it needs two counters).

B. Selection of Benchmarks

We select 18 benchmarks from SPEC CPU 2000/2006 suite. The

execution trace of each benchmark is collected by using a modified

pin-based trace extraction tool packed with MacSim tool set. Each

trace is composed of 400 million instructions after bypassing the

initialization phase ranging from 5 billion to 100 billion instructions.

We construct 6 multi-programmed workloads which generally

suffer from LLC conflicts with prefetching. Each workload consists of

4 benchmarks, among which at least two benchmarks are LLC access
intensive (LLCI), one benchmark is LLC non-intensive (LLCNI), and

one benchmark is prefetch intensive (PREFI). Here, LLCI is defined

as the accesses per 1 kilo instructions (APKI) of LLC > 8; LLCNI is

defined as APKI ≤ 8; and PREFI is defined as the prefetch requests
per 1 kilo instructions (PPKI) of LLC > 1. The workloads that every

benchmark belongs to and their properties are summarized in Table V.

These properties are profiled by running each benchmark on only one

core of a quadcore system with prefetching.

TABLE V: Properties of 18 SPEC benchmarks
benchmark LLCI PREFI Workload

art Y Y 1, 4

ammp Y N 3

bzip2 N N 1

gcc N N 6

gobmk N N 6

milc Y N 1

zeusmp Y Y 4, 6

gromacs N N 5

cactusADM N N 2

leslie3d Y Y 1, 2

dealII N N 2

hmmer N N 3

GemsFDTD Y Y 3

h264ref N N 5

lbm Y Y 2, 4

omnetpp Y Y 3, 5

astar N N 4

xalancbmk Y Y 5, 6

VI. RESULTS AND DISCUSSIONS

A. The Efficacy of RP

Table VI depicts three priority assignment schemes evaluated in our

simulations, namely, P1, P2, and P3. The priorities among different

requests under different priority assignments are represented by RAD.

For example, read has a higher priority than fill (25% RAD under

P2), which means that fill will be preempted by read if its elapse

time is below 25% of the write access latency of the LLC. We

conducted extensive experiments to explore the performance/energy

impact of different RAD settings and extracted three representative

priority assignments, as summarized in Table VI.

Figure 4 depicts the Harmonic mean speedups (HS) [8] of every

workloads under different RP schemes (P1, P2, P3), respectively.

The results are normalized to the HS of the same system without

prefetching. For comparison purpose, we also provide the results

of conventional prefetching technique (pref. only) and the geometric

mean of the HS of the read-preemptive write buffer technique [5]

(RADorg). The results show that prioritizing LLC access requests

always achieve system performance improvement w.r.t. conventional

prefetching technique though the results of different RP schemes vary

at different workloads and LLC configurations. The highest perfor-

mance is achieved by P1 with a HS improvement of 4.6%/4.8%/8.3%

for 2/4/8MB LLC compared to pref. only. RADorg , however, re-

ceives very marginal performance improvement across all scenarios

as it only differentiates the priorities between read and write back

requests.

Figure 4 also shows that compared to no prefetching, conventional

prefetching technique achieves marginal or even negative perfor-

mance improvement (i.e., wl2) in all workloads. This fact clearly

reflects the adverse impacts induced by the LLC access conflicts due

to the long write access latency of STT-RAM. The detailed analysis

on the efficacy of all RP schemes are:

• Among all RP schemes, P1 achieves the best performance because

the critical requests like read and fill are always served in a timely

manner;

• Comparing P1 and P2, lifting up the priority of fill request (P1)

results in performance improvement, indicating that the criticality

of read and fill requests are equivalent or at least close to each

other in the simulated workloads;

TABLE VI: Priority assignment schemes
read fill prefetch fill write back

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

read - - - - 25% 100% 60% 60% 100% 60% 60% 100%

fill - - - - - - 60% 60% 60% 60% 60% 60%

prefetch fill - - - - - - - - - 60% 60% 60%

write back - - - - - - - - - - - -

70

1C-1

TABLE IV: System Configuration

Execution
4GHz, OOO 4 issues(up to 2 mem and 2 FP), 20 stages pipeline, gshare branch predictor,
1024-entry BTB, global history length 14, 20 cycles branch misprediction penalty, 256-enrty ROB

Upper-level cache
32KB L1IC, 4-way, 4 banks, 4 ports, 1-cycle latency, 64B line
32 KB L1DC, 4-way, 4 banks, 4 ports, 2-cycle latency, write back, 64B line
256 KB L2, 8-way, 4 banks, 1 r/w port, 8-cycle latency, write back, 64B line, 64 MSHRs

Prefetcher Stream prefetcher with 64 streams, max prefetch degree 8, max prefetch distance 64

LLC
2/4/8 MB STT-RAM shared L3, 8/16/16-way, 8/8/8 banks, 1 r/w port, 16/12/16-cycle read,
20/48/128-cycle write, 64B line, write back, 128 MSHRs

Main memory Fixed 200-cycle latency

wl1 wl2 wl3 wl4 wl5 wl6

GM of H
S wl1 wl2 wl3 wl4 wl5 wl6

GM of H
S wl1 wl2 wl3 wl4 wl5 wl6

GM of H
S

0.9

1.0

1.1

1.2
8MB4MB2MB

N
o

rm
al

iz
ed

 v
al

u
e

to
 n

o
 p

re
f.

 pref. only
 P1
 P2
 P3

Fig. 4: HS of perf. only and different RP schemes. Geometric means of
the HS of RADorg are also included.

wl1 wl2 wl3 wl4 wl5 wl6gmeanwl1 wl2 wl3 wl4 wl5 wl6gmeanwl1 wl2 wl3 wl4 wl5 wl6gmean
0

2

4

6

8

10
37.5 13.321.824.9 11.1

8MB4MB2MB

N
o

rm
al

iz
ed

ai

ti
n

g

im
e

 read
 fill
 write back
 pref. fill

Fig. 5: Average waiting times of different types of LLC access requests
of P1.

• Comparing P2 and P3, the aggressive priority assignment to read

request (P3) introduces very little performance improvement. It

is because of the overflowing of the write buffer incurred by

the frequent preemption from the read requests as well as the

equivalent criticality of read and fill requests.

• In some cases (e.g., wl3 under 4MB, wl1 and wl4 under 8MB),

system performance is more sensitive to the priority assignment

of read requests; thus, P2 noticeably outperforms P1 for those

cases.

• RP scheme achieves more substantial performance improvement

for large LLC with long write access latency than small LLC

because of the severer LLC bank conflict. For an 8MB LLC, the

geometric mean of HS for P1 can be as high as 8.3%.

To gain the insight into the efficacy of P1, Figure 5 lists the average

waiting times of different types of LLC access requests of P1, which

are normalized to the result of pref. only. The results show that most

of the waiting time has been allocated from read and fill requests to

prefetch fill and write back requests. Less waiting time of the critical

requests is the main reason for system performance improvement.

Figure 6 summarizes the LLC energy consumptions of the different

prefetching schemes that are normalized to no prefetching. The extra

write operations induced by the preemptions in RP schemes raise the

dynamic energy of LLC. Since P1 does not preempt fill requests,

it consumes the lowest dynamic energy among all RP schemes.

Because all types of write accesses can be preempted by read requests

(i.e., RAD = 100%), the dynamic energy consumption of P3 is

significantly higher than any other schemes. Following the increase

of LLC capacity, the probability and the number of the low-priority

requests being preempted climb up due to the prolonged write access

latency, resulting in dynamic energy increase. Luckily, the leakage

energy of the LLC is substantially reduced as the execution time

0.00

0.25

0.50

0.75

1.00

1.25

8MB4MB

wl1 wl2 wl3 wl4 wl5 wl6 avg wl1 wl2 wl3 wl4 wl5 wl6 avg wl1 wl2 wl3 wl4 wl5 wl6 avg

N
o

rm
al

iz
ed

 t
o

to
l e

n
er

g
y

 static energy dyn. energy

2MB
1.34

Fig. 6: LLC energy consumption of different prefetching schemes. From
left to right for each workload: pref. only, P1, P2 and P3.

wl1 wl2 wl3 wl4 wl5 wl6

GM of H
S wl1 wl2 wl3 wl4 wl5 wl6

GM of H
S wl1 wl2 wl3 wl4 wl5 wl6

GM of H
S

0.9

1.0

1.1

1.2 8MB4MB2MB

N
o

rm
al

iz
ed

 v
al

u
e

to
 n

o
 p

re
f.

 P1
 LPC
HLGPC

Fig. 7: HS of P1, LPC+P1 and HLGPC+P1. Geometric means of the HS
of LPC only and HLGPC only are also included.

decreases. The average LLC energy consumptions increase less than

1% across all LLC configurations. Since P1 achieves well-balanced

tradeoff between system performance and energy consumption, we

select it as our baseline RP scheme in the evaluation of HLGPC.

B. The Efficacy of HLGPC

Figure 7 depicts the HS for every workload before and after

applying LPC+P1 and HLGPC+P1, respectively. The selected RP

scheme is P1 and the selected LPC scheme is FDP [9]. The geometry

means of the HS of LPC only and HLGPC only are also included

to illustrate the result of the prefetch control without RP scheme.

All results are normalized to no prefetching. The performance of

LPC only is visibly worse than that of HLGPC only, indicating

the necessity of combining both global and local prefetch control.

Compared to applying only P1, both LPC+P1 and HLGPC+P1

improve the average system performance while HLGPC+P1 achieves

the highest improvement (4.3%/1.7%/2.5% HS for 2/4/8MB LLC

compared to P1 or 9.6%/6.5%/11% HS for 2/4/8MB LLC compared

to pref. only). Small LLC benefits the most from HLGPC+P1 as the

corresponding LLC access conflicts are effectively alleviated.

In HLGPC+P1, the rules applied at GPC level may mitigate the

prefetcher’s aggressiveness and cause the increase in LLC miss rate.

If system performance is more sensitive to LLC miss rate than access

conflicts, LPC+P1 could outperform HLPGC+P1, as shown in “wl1”

and “wl3” under 8MB LLC. In “wl2” under 4MB LLC, the LLC

access conflicts induced by prefetching is very insignificant. Applying

extra control on prefetch in LPC+P1 or HLGPC+P1 indeed degrades

the system performance compared to applying no prefetch control

(P1).

Figure 8 presents the profile of the number of fill and prefetch fill

requests and the average waiting times of read and fill requests before

71

1C-1

 read fill

P1

LPC+P1

HLGPC+P1 P1

LPC+P1

HLGPC+P1 P1

LPC+P1

HLGPC+P1
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 t
o

 p
re

f.
 o

n
ly

 pref. fill fill

P1

LPC+P1

HLGPC+P1 P1

LPC+P1

HLGPC+P1 P1

LPC+P1

HLGPC+P1
0.3

0.4

0.5

0.6

0.7

0.8
(a)

N
o

rm
al

iz
ed

 t
o

 p
re

f.
 o

n
ly

(b)
8MB4MB8MB4MB 2MB2MB

Fig. 8: The normalized (a) Number of fill and prefetch fill requests of P1,
LPC+P1 and HLGPC+P1; (b) Average waiting times of critical requests
of P1, LPC+P1 and HLGPC+P1.

and after applying different prefetch controls. All data are normalized

to pref. only. As shown in Figure 8(a), HLGPC+P1 substantially

suppresses prefetch fill requests without significantly increasing LLC

miss rate denoted by the number of fill requests. It also implies that

the miss rate may decrease with less aggressive prefetching because

of the alleviation of cache pollution. As shown in Figure 8(b), the

average waiting time of read and fill requests for each scheme is also

significantly reduced due to the alleviated LLC access conflicts.

Figure 9 summarizes the LLC energy consumptions of different

prefetch controls that are normalized to no prefetching. By throttling

the prefetch requests, the dynamic energies of both LPC+P1 and

HLGPC+P1 are all below that of P1 while HLGPC+P1 achieves

the lowest dynamic energy consumption. Nonetheless, as the system

performance improves, the total energy efficiency of the LLC with

HLGPC+P1 is enhanced by 7.3%/4.8%/5.6% for 2MB/4MB/8MB

LLC compared to pref. only.

To gain the insight into how HLGPC+P1 globally balances the

aggressiveness of different prefetchers in the CMP system, we

conducted a case study on the execution of four applications of

“wl4” under a 2MB LLC, as shown in Figure 10. Figure 10(a)

shows the individual application performance, which is normalized

to that when only one application running exclusively on only one

core of the quadcore system. After applying P1, the performances of

art and lbm are substantially improved while that of the other two

benchmarks are only slightly improved. After introducing LPC+P1,

the performance of art and astar are further improved but those

of lbm and zeusmp slow down a little bit. The microscope analysis

in Figure 10(b) shows that after applying LPC+P1, art and zeusmp
experience noticeable prefetch de-aggressiveness that relieve the LLC

access conflicts. Simulations also show that the prefetch accuracy

in these two applications are low, i.e., 34% for art and 46% for

zeusmp in LPC+P1, while the volumes of prefetch requests are high.

Therefore, HLGPC+P1 is able to improve the system performance by

further throttling the prefetch aggressiveness and mitigating the LLC

access conflicts. As shown in Figure 10(b), HLGPC+P1 significantly

throttles the prefetch aggressiveness of art and zeusmp while

moderately throttles the prefetch agggressiveness of lbm. However,

the performance improvement of HLGPC+P1 in lbm is limited as

the prefetch accuracy is high (e.g., 91% in LPC+P1). astar is a

memory non-intensive application with extremely low LLC access

frequency and contention. Hence, HLGPC+P1 actually degrades

the performance of astar because of the conservative prefetch

0.00

0.25

0.50

0.75

1.00

1.25

N
o

rm
al

iz
ed

 t
o

ta
l e

n
er

g
y

 static energy dyn. energy

8MB4MB2MB

wl1 wl2 wl3 wl4 wl5 wl6 avg wl1 wl2 wl3 wl4 wl5 wl6 avg wl1 wl2 wl3 wl4 wl5 wl6 avg

Fig. 9: Total energy consumptions of different prefetch control schemes.
From left to right for each workload: P1, LPC+P1, HLGPC+P1.

 very conv. medium
 conv. aggr. very aggr.

art lbm zeusmp astar
0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
al

iz
ed

 In
d

iv
id

u
al

 S
p

ee
d

u
p

 no pref.

1

art lbm zeusmp astar
0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

o
n

 o
f

g
g

re
ss

iv
e

ev
el

Fig. 10: A case study of workload 4: (a) Individual speedup; (b) The
distribution of prefetch aggressiveness, from left to right is P1, LPC+P1
and HLGPC+P1, respectively.

aggressiveness.

VII. CONCLUSION

In this work, we identify the adverse impact of long write access la-

tency of STT-RAM LLC on the prefetching efficacy in CMP systems.

Two orthogonal and complimentary techniques, request prioritization
(RP) and hybrid local-global prefetch control (HLGPC), are proposed

to alleviate the prefetch-induced LLC access conflicts and improve

the processing efficiency for LLC access requests. Our simulation

results on a quadcore system show that combining RP and HLGPC,

the system performance can be improved by 9.1%, 6.5%, and 11.0%

for 2MB, 4MB, and 8MB STT-RAM LLCs, respectively, compared to

the design without any LLC request prioritization or prefetch control.

The corresponding LLC energy consumption is also saved by 7.3%,

4.8%, and 5.6%, respectively.

REFERENCES

[1] J. Doweck. Inside intel core microarchitecture and smart memory access.
Intel White Paper, 2006.

[2] E. Ebrahimi et al. Coordinated control of multiple prefetchers in multi-
core systems. In MICRO, pages 316–326, 2009.

[3] E. Ebrahimi et al. Techniques for bandwidth-efficient prefetching of
linked data structures in hybrid prefetching systems. In HPCA, pages
7–17, 2009.

[4] E. Ebrahimi et al. Prefetch-aware shared resource management for multi-
core systems. In ISCA, pages 141–152, 2011.

[5] G. Sun et al. A novel architecture of the 3d stacked mram l2 cache for
cmps. In HPCA, pages 239–249, 2009.

[6] J. Tendler et al. Power4 system microarchitecture. IBM Technical White
Paper, Oct. 2001.

[7] M. Hosomi et al. A novel non-volatile memory with spin torque transfer
magnetization switching: Spin-ram. In IEDM, pages 459–462, 2005.

[8] S. Eyerman et al. System-level performance metrics for multiprogram
workloads. IEEE Micro, 28(3):42–53, 2008.

[9] S. Srinath et al. Feedback directed prefetching: Improving the perfor-
mance and bandwidth-efficiency of hardware prefetchers. In HPCA,
pages 63–74, 2007.

[10] S. Thoziyoor et al. A comprehensive memory modeling tool and its
application to the design and analysis of future memory hierarchies. In
ISCA, pages 51–62, 2008.

[11] W.-F. Lin et al. Filtering superfluous prefetches using density vectors.
In ICCD, 2001.

[12] W. Wen et al. PS3-RAM: A fast portable and scalable statistical STT-
RAM reliability analysis method. In 49th DAC, pages 1187–1192, June
2012.

[13] W. Wen et al. Loadsa: A yield-driven top-down design method for STT-
RAM array. In ASP-DAC 2013, pages 291–296, 2013.

[14] X. Dong et al. Circuit and microarchitecture evaluation of 3d stacking
magnetic ram (mram) as a universal memory replacement. In DAC,
pages 554–559, 2008.

[15] X. Dong et al. Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE TCAD of ICS, 31(7):994–
1007, 2012.

[16] X. Wu et al. Hybrid cache architecture with disparate memory technolo-
gies. In ISCA, pages 34–45, 2009.

[17] X. Zhuang et al. A hardware-based cache pollution filtering mechanism
for aggressive prefetchers. In ICPP, 2003.

[18] Y. Chen et al. On-chip caches built on multilevel spin-transfer torque
RAM cells and its optimizations. J. Emerg. Technol. Comput. Syst.,
9(2):16:1–16:22, May 2013.

[19] MacSim. http://code.google.com/p/macsim/.

72

1C-1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

