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ABSTRACT
Convolutional neural network (CNN) finds applications in a variety
of computer vision applications ranging from object recognition and
detection to scene understanding owing to its exceptional accuracy.
There exist different algorithms for CNNs computation. In this paper,
we explore conventional convolution algorithm with a faster algo-
rithm using Winograd’s minimal filtering theory for efficient FPGA
implementation. Distinct from the conventional convolution algo-
rithm, Winograd algorithm uses less computing resources but puts
more pressure on the memory bandwidth. We first propose a fusion
architecture that can fuse multiple layers naturally in CNNs, reusing
the intermediate data. Based on this fusion architecture, we explore
heterogeneous algorithms to maximize the throughput of a CNN. We
design an optimal algorithm to determine the fusion and algorithm
strategy for each layer. We also develop an automated toolchain to
ease the mapping from Caffe model to FPGA bitstream using Vivado
HLS. Experiments using widely used VGG and AlexNet demon-
strate that our design achieves up to 1.99X performance speedup
compared to the prior fusion-based FPGA accelerator for CNNs.

1 INTRODUCTION
Recently, convolutional neural networks (CNNs) are increasingly
used in numerous cognitive and recognition computer vision appli-
cations [11, 13, 22]. CNN has high computation complexity as it
needs a comprehensive assessment of all the regions of the input
image or features maps and computes the score [7]. To overcome the
computing challenge, specialized hardware accelerators designed
for CNNs have emerged which deliver orders of magnitude perfor-
mance and energy benefits compared to general purpose proces-
sors [4]. Among them, Field Programmable Gate Arrays (FPGAs)
is an appealing solution due to its advantages of reconfigurability,
customization and energy-efficiency [21, 27]. Recent progress in
High Level Synthesis (HLS) has greatly lowered the programming
hurdle of FPGAs [6, 15]. With the innovation of FPGA architecture
and HLS, CNN inference applications are becoming commonplace
on embedded systems [5, 18, 19, 21].

CNNs are composed of multiple computation layers, where the
output feature maps of one layer are the input feature maps of the
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following layer. Prior studies have shown that the computation of the
state-of-the-art CNNs are dominated by the convolutional layers [7].
For example, the convolutional layers of GoogleNet [22] occupies
90% of the total computation time. Convolutional layers can be
implemented using a straightforward and general approach or other
algorithms such as matrix multiplication, FFT through computation
structure transformation.

More recently, Winograd algorithm [26] based on minimal fil-
tering theory has been introduced for layers with small kernel sizes
and strides [14]. Compared to the conventional implementation, fast
Winograd algorithm reduces the number of required multiplica-
tions by reusing the intermediate filtering results [14]. Winograd
algorithm is computing resource efficient but puts more pressure on
the memory bandwidth. To accelerate CNNs on FPGAs, the key is to
parallelize the CNNs as much as possible until either the computing
resources (LUTs, BRAMs, DSPs, FFs) or memory bandwidth are
exhausted. Unfortunately, homogeneous design using either con-
ventional or Winograd algorithm will only exhaust one dimension
of resource, leaving others under-utilized. To fully utilize FPGA
resource, this work makes the following contributions:
• We present a framework that explores heterogeneous algorithms

for accelerating CNNs on FPGAs. The framework employs fusion
architecture to fuse multiple layers to save memory transfer, but
efficiently utilize the computing resources.

• We design an optimal algorithm based on dynamic programming
to determine the structure of the fusion architecture and the imple-
mentation algorithm for each layer. Given a CNN, our algorithm
maximizes the throughput subject to a data transfer constraint.

• We present an automatic tool-flow to ease the mapping from the
Caffe model to FPGA bitstream. The tool-flow will implement
each layer and enable dataflow through Vivado HLS automati-
cally.

Experiments using widely used VGG and AlexNet demonstrate that
our techniques achieve up to 1.99x performance speedup compared
to prior fusion-based FPGA accelerator for CNNs [1].

2 BACKGROUND AND MOTIVATION
2.1 Convolution Algorithms
The conventional algorithm directly convolves the input feature
maps with convolutional kernels to produce the output feature maps.
More clearly, N size K × K kernels with M channels are used to
slide through the M size H ×W input feature maps and perform the
convolution. We use Dh,w,m to denote the (h,w) element in themth
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output feature map and Gn,u,v,m to denote the the (u, v) element
in the nth kernel and mth channel. Then, the computation can be
formulated as follows,

Yi, j,n =
M∑

m=1

K∑
u=1

K∑
v=1

Di∗S+u, j∗S+v,m ×Gn,u,v,m (1)

where S is the stride when shifting the kernels and Yi, j,n represents
the (i, j) element in the nth output feature map.

The conventional convolution algorithm is general but less ef-
ficient. As an alternative, convolution can be implemented using
Winograd minimal filtering algorithm [14].

Let us denote the result of computing m outputs with the r -tap
FIR filter as F (m, r ). Conventional algorithm for F (2, 3) requires 2 ×
3 = 6 multiplications. Winograd algorithm computes F (2, 3) in the
following way:

F (2, 3) =
[
d0 d1 d2
d1 d2 d3

]
×


д0
д1
д2

 =
[
m1 +m2 +m3
m2 −m3 −m4

]
(2)

where

m1 = (d0 − d2)д0 m2 = (d1 + d2)
д0 + д1 + д2

2
m4 = (d1 − d3)д2 m3 = (d2 − d1)

д0 − д1 + д2
2

Now, only 4 multiplications are required. In general, the number
of multiplications that Winograd algorithm requires is equal to
the input size. The above 1D algorithm can be nested to form 2D
minimal algorithms F (m ×m, r × r ) as follows,

Y = F (m ×m, r × r ) = Aᵀ [[GдGᵀ] � [BᵀdB]]A (3)

where d is the (m + r − 1) × (m + r − 1) input tile, д is the r × r
filter, G, B and A are constant matrices and � indicates element-wise
multiplication. For the 2D algorithm, each input feature map is first
divided into tiles of size (m+r −1)×(m+r −1). Then, F (m×m, r ×r )
is calculated with each tile and kernel for every channel. Finally, the
results are accumulated to produce an output tile with size m ×m.
The algorithm details can be found in [26].

For the implementation of convolution on FPGAs, DSPs is mainly
the limiting resource as it is employed for multiplication. Winograd
algorithm is more efficient as it performs the equivalent amount con-
volution operations but with less DSP resources. This algorithm
can be implemented most efficiently for the cases where kernel
size is small and stride is 1. There are multiple tile size choices
for Winograd algorithm. In this paper, we use a uniform size
F (4 × 4, 3 × 3).

2.2 Motivation
Roofline model [25] has been designed to analyze the performance
bottleneck by relating the attainable performance with memory band-
width and computational roof visually. In Roofline model as shown
in Figure 1, the X-axis is the computation to communication (CTC)
ratio while the Y-axis represents the attainable performance. CTC
ratio denotes the computation operations per transferred data. Band-
width roof (e.g. slope) is the product of CTC ratio and off-chip
memory bandwidth. Computational roof describes the peak perfor-
mance provided by the available hardware resources. Obviously, the
attainable performance is restricted to both the two roofs.

computational roof of Winograd algorithm(3059.7GOPS)

computational roof of conventional algorithm(929.6 GOPS)
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Figure 1: Motivation illustration using roofline model
We rely on the roofline model to illustrate the benefit of our hetero-

geneous design. The conventional and Winograd algorithms have
different computational roofs. The conventional algorithm is known
to be computation limited [7]. While the Winograd algorithm
puts more pressure on the memory system since the computation
capability is improved. In Figure 1, A represents the conventional
algorithm and B represents the Winograd algorithm. In our system,
both algorithms are implemented using the same data reuse structure.
Therefore, they share the same CTC ratios.

We use B′ to denote the ideal performance of Winograd algo-
rithm without bandwidth roof. The performance gap between B and
B′ indicates the computing resource waste due to the bandwidth sat-
uration. Let us use the 2nd convolutional layer of VGGNet [20] as
an example. This layer has 64 input feature maps with size 224× 224
and 64 kernels with 64 channels and size 3×3. For simplicity, only
DSP resources are considered when calculating the computational
roofs and only the input feature maps are considered for bandwidth
consumption. In Figure 1, design A yields 929.6 GOPS performance
on a Xilinx FPGA chip Virtex7 485t, while design B suffers from
insufficient bandwidth and achieves 2592 GOPS and 3059.7 GOPS
can be realized by design B′.

In this paper, we employ fusion architecture to fuse multiple
neighboring layers together. This design reconstructs the compu-
tation of the fused layers so that the inputs flow through the fused
layers to produce the outputs, avoiding storing and reloading the
intermediate feature maps. For the fused layers, we explore the
conventional and Winograd algorithms. This helps to improve the
computing resource utilization without aggravating the bandwidth.
In fact, it actually increases the CTC ratio as more operations are
performed for the same amount of transfer, leading to a better design
C in Figure 1. Also, both conventional and Winograd algorithms
can be implemented with different parallelism parameters, leading
to different resource utilization. This adds another dimension to
explore in our technique.

3 FRAMEWORK
Our framework provides a comprehensive solution that can map a
great diversity of CNNs onto FPGAs. We design an automatic tool-
flow to ease the mapping process as shown in Figure 3. It takes Caffe
configuration file and specification of the target FPGA as inputs and
generates bitstream on FPGA. Caffe is a popular deep learning
infrastructure [12] and the structure of CNN can be described in its
configuration file. The specification of the target FPGA includes
Block RAMs (BRAMs), DSPs, off-chip bandwidth and others. The
tool-flow involves three main components: architecture, optimal
algorithm, and code generator.
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Figure 2: Architecture Details

• Architecture. Recently, a fusion architecture using tile-based
buffers is introduced to fuse multiple layers together and save
off-chip memory transfer. The tile-based reuse buffer is difficult
to use as it has to deal with complex boundary conditions [1].
Instead, we propose a simple fusion architecture based on line
buffer.

• Optimal Algorithm. We design an optimal algorithm to determine
the structure of the fusion architecture and the implementation
choice for each layer based on this architecture. The algorithm
is based on dynamic programming and branch-and-bound search.
Our algorithm also balances the inter-layer pipeline within a fu-
sion group.

• Code Generator. We rely on HLS to generate the implementation
of the optimal strategy. When generating the implementation
code, templates are built in order to handle different kinds of
parameters and layers. Then the source code is compiled into a
bitstream using Vivado toolchain.

4 ARCHITECTURE DESIGN
4.1 Fusion Architecture
The fusion architecture is designed based on the fact that for convolu-
tional operations one element in the output feature map only depends
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Templates
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Input
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Figure 3: Framework Overview

on a small region (e.g. kernel size) of the input feature map, which
in turn depends on a larger region of its input layer. Figure 2 (a)
shows a fusion example of three layers, every element of conv3 layer
depends on a 3 × 3 tile of conv2 layer. Each element in the conv2
layer depends on a 3 × 3 tile of conv1 layer. Collectively, the final
output element along with all the tiles it relies on compose a pyramid.
Using fusion architecture, to compute one element in the final output
layer, we only need an input tile of the first layer, all the necessary
intermediate tiles in the pyramid can be computed, without storing
and retrieving the intermediate data to and from off-chip. Thus, this
design reduces the pressure of memory bandwidth.

4.2 Line Buffer Design
The pyramids of adjacent elements in the last layer overlap with each
other, leading to data reuse opportunities. A detailed discussion was
made about whether to reuse or recompute these values in [1]. In its
final design, tile-based buffers are adopted to store those reusable
data and additional layers are inserted between original layers to
manage these buffers. However, complex operations are performed
to update the tile-based buffers due to mutative boundary conditions.
Besides, these buffers occupy additional BRAMs. In this work, we
use circular line buffer for each layer as shown in Figure 2 (b), which
naturally achieves data reuse without extra resources or elaborate
data management efforts.

Suppose a convolutional layer has M input feature maps with size
H ×W . It convolves with N size K × K kernels with M channels.
The shifting stride of kernels is S . In our design, the whole input
line buffer consists of K + S lines. Initially, the first K rows of input
feature maps are loaded into line [1, K]. After this, kernels slide
through these lines to perform convolutions and produce the first row
of corresponding output feature maps. Meanwhile, the next S rows
are being transferred into line [K + 1, K +S]. Then, we convolve line
[1 + S , K + S], load feature maps into line [1, S] and store the first
output row. The next round begins as line [1+ 2S , (K + 2S)%(K + S)]
are being convolved and line [1 + S , 2S] are being loaded. Figure 2
(b) illustrates the process in one channel when K = 3 and S = 1.



4.3 Pipeline Design
Based on the fusion architecture, we employ a two-level pipeline
design: intra-layer pipeline and inter-layer pipeline, as depicted in
Figure 2 (c) and (d).
• Intra-layer. For each layer, it involves three phases: data load,

computation, and data store. Our algorithm (section 5) determines
the algorithm choice for each layer. After that, we use pipeline
to hide the data load and store with computation as shown in
Figure 2 (d).

• Inter-layer. When employing fusion design, we pipeline the lay-
ers that are fused together. Obviously, in the pipeline manner,
the pipeline stage length is determined by the longest stage. It
becomes more complex when different algorithms can be used
for different layers. Our algorithm (section 5) will balance the
latency between different layers in the same fusion group through
resource allocation.

5 ALGORITHM DETAILS
The prior section presents a fusion architecture. In this section, we
design an optimal algorithm that divides the CNNs into fusion groups
and determines the implementation algorithm for each layer. The
aim of the algorithm is to minimize the end-to-end latency of a given
CNN. Since the computation of the given CNN is fixed, minimizing
the latency is equivalent to maximizing the throughput. For each
algorithm (either conventional or Winograd), we also explore its
hardware parallelism, corresponding to the number of computing
units in Figure 2. Different hardware parallelism leads to different
resource usage.

DEFINITION 1. For layer i, its implementation strategy is a triple
Ci = 〈дi ,alдoi ,pi 〉 in the fusion architecture, where дi , alдoi and pi
specify the fusion group, algorithm, and hardware parallelism for
layer i, respectively. Accordingly, a strategy for an N-layer network
is defined as a set S = {Ci |1 ≤ i ≤ N }, representing the structure of
fusion design and implementation for every layer.

PROBLEM 1. Given the model of an N-layer CNN and resource
constraint R, the goal is to find out the optimal strategy S which
minimizes the end-to-end latency of the CNN subject to data transfer
constraint T.

On FPGAs, resource constraint R is multi-dimensional including
BRAMs, DSP slices and logic cells of the target device. We use T
to bound the feature maps transfer only, since fusion design does not
help to save the kernel weight transfer.

We develop a dynamic programming algorithm to solve Prob-
lem 1. Let L(i, j, t) represent the latency of the optimal strategy for
layers from i to j, where t is the transfer constraint. As long as t is
sufficient for the minimal transfer requirement, we can either unify
them as a group or find a sweet spot to split them into two groups.
Therefore, we derive the following recursion formula

L(i, j, t) =


min{ min

i≤k<j,x<t
{L(i,k,x) + L(k + 1, j, t − x)},

f usion[i][j]}
t ≥ min t[i][j]

∞ t < min t[i][j]
where f usion[i][j] represents for the minimal latency of fusing the
ith layer to the jth layer as a group under the constraints,min t[i][j]

Algorithm 1: optimal algorithm
Input: N , T , R
Output: S

1 for j = 0; j < N ;++j do
2 for i = j ; i ≥ 0;−−i do
3 for t = 0; t < T ;++t do
4 if t < min t [i][j] then
5 L[i][j][t ] = ∞
6 else
7 min latency = f usion[i][j]
8 k f laд = j
9 t f laд = t

10 for k = i ;k < j ;++k do
11 if t < (min t [i][k ] +min t [k + 1][j]) then
12 continue
13 for x = 0; x < t ;++x do
14 sum latency = L[i][k ][x ] + L[k + 1][j][t − x ]
15 if sum latency < min latency then
16 min latency = sum latency
17 k f laд = k
18 t f laд = x
19 L[i][j][t ] =min latency
20 k mark [i][j][t ] = k f laд
21 t mark [i][j][t ] = t f laд
22 Generate the fused design structure of S based on k mark and t mark
23 foreach group in S.structure do
24 update ipls(дroup .star t, дroup .end, R)
25 return S

refers to the minimal data transfer requirement, namely the sum of
input feature map size of the ith layer and output feature map size
of the jth layer.

Algorithm 1 gives the implementation details. The minimal la-
tency of the input CNN is given by L[0][N − 1][T − 1]. Algorithm 1
first generates the structure of fusion design (line 22). Then, for each
fusion group, we generate the implementation details of each layer
(line 23-24).

To derive f usion[i][j] used in Algorithm 1 (line 7), we devise
a depth-first based branch-and-bound algorithm as shown in Algo-
rithm 2. Algorithm 2 implements layer i to j as a group under the
resource constraint R. Starting from the ith layer, it goes deeper
until reaching the jth layer. Once a node in the jth layer is visited,
the group latency is updated using the path latency if necessary (line
7-8). Since we employ inter-layer pipeline for the layers within the

Algorithm 2: branch-and-bound algorithm
Input: i , j , R
Output: дroup latency

1 дroup latency = UPPER
2 ROOT = new NODE(zero res usдae, 0)
3 visit(ROOT , i, i, j)
4 return дroup latency
5 Function visit(parent , cnt , star t , end)
6 if cnt > end then
7 if parent .lat < дroup latency then
8 дroup latency = parent .lat
9 return

10 foreach algorithm algo for layer cnt do
11 foreach p from max to min parallelism when using alдo for layer cnt do
12 if unvisited[cnt][algo][p] then
13 ipls[cnt ][alдo][p] = implement(cnt, alдo, p)
14 unvisited [cnt ][alдo][p] = false
15 ipl = ipls[cnt ][alдo][p]
16 if ipl .lat > дroup latency then
17 break
18 if meet constraints(ipl, parent, R) then
19 child = new

NODE(ipl .r es + parent .r es, max{ipl .lat, parent .lat })
20 visit(child, cnt + 1, star t, end )
21 delete child
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same group as shown in Figure 2 (c), the path latency is the latency
of the slowest layer along the path. We use the current best group la-
tency to bound the following tree traversal (line 16-17). We will only
create a new branch if the current path latency is smaller than the
group latency. When implementing a layer, our framework explores
different algorithms and hardware parallelisms (line 10-11). Dif-
ferent algorithms and parallelisms lead to different resource usage.
The implement function evaluates the resource requirements and
the expected latency of the given algorithm alдo for the cntth layer
with parallelism p (line 13). If the left resources are sufficient for
the implementation, a child node would be generated and explored
(line 18-20).

The complexity of Algorithm 1 is O(N 3T 2). The f usion[i][j]
array is generated by Algorithm 2 offline.

6 CODE GENERATOR
Given the optimal strategy, the code generator generates HLS source
code using templates, as depicted in Figure 4. We design tem-
plates for various type of layers including convolution, pooling, and
local response normalization (LRN) layers. Moreover, for convo-
lutional layers, we design different templates for conventional and
Winograd algorithms. When using these templates, several pa-
rameters need to be specified such as data type, feature map shapes,
kernel size, stride, and parallelism.

For the layers to be fused in a group, we wrap them with a top func-
tion as shown in Figure 4. Then, to enable the inter-layer pipeline
we add DATAFLOW directive to the top function which allows the
data flow through the layers. The memory channels between layers
can be implemented as either ping-pong or FIFO buffers depend-
ing on the access patterns. Our architecture guarantees that both
input and output data for each layer are accessed in sequential order.
Thus, the FIFO channels are used. The templates carefully partition
line buffers to fully exploit PIPELINE directives and elaborate sub-
functions to enable intra-layer pipeline. DATAPACK directives are
also used to maximize the bandwidth utilization. For the last step,
the code generator employs Vivado tool-chain to compile the source
code into bitstream.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup
For a given CNN, we apply our algorithm to obtain optimal strategy
which directs the code generator. After the HLS source code is gen-
erated, we use Vivado HLS (v2016.2) to conduct C simulation and
C/RTL co-simulation. Once the implementation has been validated,
we employ Vivado SDSoC (v2016.2) to compile the source code
into bitstream. To evaluate our framework, we use an off-the-shelf
device zynq ZC706 as the experiment platform. ZC706 board is
composed of dual ARM Cortex-A9 CPUs, one XC7Z045 FPGA

chip, and 1 GB DDR3 memory. It provides a 4.2 GB/s peak memory
bandwidth. We set its working frequency as 100 MHz for all designs
and use 16-bit fixed data type.

As mentioned above, Winograd algorithm can be configured
with different tile size. We use F (4 × 4, 3 × 3) in this work. Thus, to
complete the same amount of computation, our Winograd imple-
mentation uses one-quarter of the DSPs needed by the conventional
algorithm while requiring 4 times higher bandwidth.

When adopting the proposed algorithm, we define the unit of
transfer constraint as 10 KB and employ 8 as an upper bound for
the number of layers within a fusion group due to memory ports
limitation. For both case studies, our algorithm returns the optimal
solutions within seconds. Very deep CNNs such as GoogleNet are
usually based on modules and highly structured. To further improve
the efficiency of our algorithm, we can treat every module as a single
layer.

7.2 Case Study of VGG
We first compare our framework to the state-of-the-art fusion archi-
tecture proposed by [1] using VGG [20]. VGGNet-E consists of
16 convolutional layers, 3 fully connected layers, 3 max-pooling
layers and one softmax layer. Alwani et al. [1] choose to fuse the
first five convolutional layers and two pooling layers as the feature
map transfer is heavy in these layers. For a fair comparison, we fuse
these seven layers, too. ReLU layers can be easily integrated into
convolutional layers. We implement [1] and our techniques using
the same data type. Figure 5 shows the latency comparison under
five different feature map transfer constraints.

Under all evaluated constraints, our framework performs consis-
tently better than [1]. We achieve 1.42X-3.85X (on average 1.99X)
performance speedup for different transfer constraints. As shown in
Figure 5, when the transfer constraint is relaxed, our technique can
achieve better performance. Note that without fusion architecture, at
least 34 MB total feature map transfer is required for these layers.
If we use 34 MB as the constraint, each layer forms a group in our
algorithm, offering 660 GOPS effective performance*. However, [1]
fails to do so as it does not provide the capability to explore the
trade-off between performance and memory transfer.

Table 1 gives a detailed comparison when the transfer constraint
is set to 2 MB. Our strategy uses a similar amount of resource and
power but achieves much better performance compared with [1].

*effective performance = the number of total operations / the total latency.
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Figure 5: First five convolutional layers latency comparison of
VGG between our strategies and [1].



Table 1: Detailed comparison under 2 MB transfer constraint
Ours [1]

BRAM18K 909 703
DSP48E 824 784

FF 120,957 90,854
LUT 155,886 118,400

Power(W) 9.4 9.4
Energy Efficiency (GOPS/W) 24.42 17.25

Table 2: Implementation details of AlexNet
Layers Algorithm Parallelism BRAM DSP FF LUT
conv 1 conventional 144 101 144 17,578 31,512
conv 2 Winograd 4 104 144 23,688 37,838
conv 3 Winograd 2 72 72 12,059 19,629
conv 4 conventional 192 368 192 20,005 27,613
conv 5 Winograd 2 112 72 10,923 17,597

other layers 144 101 11,873 14,780
Total 901 725 96,126 148,969

Available 1090 900 437,200 218,600
Utilization (%) 82.7 80.6 22.0 68.1

Latency 1.73 ×106 cycles

The fusion design that we employ helps to decrease the feature
map transfer, leading to great energy saving for the memory transfer
part. Our fusion architecture leads to 94% to 0% (average 68.2%)
transfer energy saving for different transfer constraints in Figure 5.
Besides, our heterogeneous algorithms exploration improves the
performance by 99% on average, leading to another 50% energy
saving for the computing part.

7.3 Case Study of AlexNet
AlexNet [13] is composed of five convolutional layers (integrated
with ReLU), three pooling layers, two LRN layers and three final
fully connected layers. We omit the last three fully connected layers
as the FC layers use very small feature map compared with kernel
weight [1].

Given a 340KB transfer constraint (the total size of the first layer
input feature map and the last layer output feature map), we are
able to fuse all the layers into one group. Table 2 gives the imple-
mentation details for each layer. For this case, the second, third
and fifth convolutional layers are implemented using Winograd
algorithm, while the other layers are implemented using the con-
ventional algorithm. The DSPs saved by Winograd algorithm are
exploited by conventional convolutional layers, improving overall
performance. In another word, our framework exploits the generality
of conventional algorithm and the high performance of Winograd
algorithm. Compared with [1], our strategy achieves 1.24X speedup
due to small exploration space.

8 RELATED WORK
To overcome the computing challenge of CNNs, lots of FPGA-
based accelerators have been proposed for better performance or
energy-efficiency. Some works bend themselves to building frame-
works. [19] develops a virtual machine and hand-optimized tem-
plates and [23] builds a component library. Some elaborate on their
high-performance convolution PE designs. [2, 3, 21] design PEs
which utilize parallelism in different dimensions. [27] proposes an
accelerator that serves all convolutional layers owning to uniform
unroll factors. Emerging convolutional algorithms also drive new
PE designs. For example, [17] introduces an end-to-end accelera-
tor based on Winograd algorithm. However, different from this
work, [17] mainly focus on the PE design of Winograd algorithm.
Others try to achieve higher sparsity to enhance energy-efficiency.
There exist three main methods towards higher sparsity: connection

pruning [9, 10], low-rank decomposing and regularizing [8, 16, 24].
These work are orthogonal to our exploration. Besides, all these
work process networks layer by layer. Recently, [1] propose a fu-
sion design which fuses the computation of adjacent layers. Fusion
design reuses intermediate data and decreases feature map transfer.

9 CONCLUSIONS
In this work, we propose a framework that helps in exploring het-
erogeneous algorithms for accelerating deep CNNs. We first design
a line-buffer-based architecture that applies to distinct algorithms
and achieves intermediate data reuse naturally. Then we develop a
dynamic programming algorithm to find the optimal strategy. Fi-
nally, we employ our code generator to implement the strategy. We
evaluate our strategies for AlexNet and VGG on Xilinx ZC706 board
to show the robustness and efficiency of our framework.
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