
FLOORPLANNING CHALLENGES IN EARLY CHIP PLANNING

Jeonghee Shin, John A. Darringer, Guojie Luo 1, Merav Aharoni,
Alexey Y. Lvov, Gi-Joon Nam and Michael B. Healy

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

jeonshin@us.ibm.com

ABSTRACT

Early chip planning is becoming more critical

as server system designers strive to explore a

large design space with multiple cores and

accelerators in an advanced silicon technology that

includes 3D chip stacking. During early chip

planning, designers search for the high-level

design and layout that best satisfies a myriad of

constraints and targets. In this paper, we discuss

our experience in applying traditional floorplanning

tools at this early stage and suggest how they

might be adapted for early floorplanning.

I. INTRODUCTION

In the highly competitive server market, there

is increasing pressure on system designers to

consider more alternatives to meet performance

demands with the reduced benefits from

technology scaling. At the same time, there are

growing concerns about power dissipation limits,

temperature limits, current limits, voltage-drop

limits and lifetime reliability - all influenced by the

chip layout. In the initial stages of server chip

design, designers consider a wide range of options

for the overall design and try to estimate values for

all the design metrics to decide which configuration

is the "best. " They typically use data from an

existing design to estimate the size of the major

blocks in the new technology, then make

adjustments for planned changes in processor core

performance and cache sizes, determine the 110
drivers needed for the required off-chip bandwidth

and reconfigure the on-chip interconnect to handle

any additional blocks. They also produce a high

level floorplan, using their experience to arrange

the high-level blocks, to estimate chip size and

consider other constraints. Since arranging the

blocks is often a manual process done by an

experienced designer, only a few configurations

1 Guojie Luo is a PhD student at UCLA. This work was
performed while he was an intern at the IBM research center.

978-1-4577-1617-1/11/$26.00 ©2011 IEEE 388

can be considered in detail. With 3D technology

there are many additional issues, such as

portioning function to the difference layers and

considering the placement and impact of through

silicon vias (TSVs). This growing challenge has

motivated the pursuit of more automation to enable

many more alternatives to be explored with

increased accuracy [1]. In this paper, we focus on

automated floorplanning in the early stages of

server chip design.

For the automation of early floorplanning, we

first considered several commercial and academic

tools. Note that most of these floorplanning tools

were designed to be used much later in the design

process, when physical design attributes are

known. However, the netlists available at the early

stage often include high-level blocks without

interior details such as timing and pin locations.

Instead, only block diagrams, constraints and

power abstracts are available for placement,

created for architectural configurations, based on a

reference design. As a result, these tools need to

be adapted to this very different task in order to

generate good ftoorplans. In this paper, we

describe our experience in applying the existing

tools at the early stage of server design, and

discuss several well-known techniques that can be

adopted by the tools for early floorplanning.

In the rest of the paper, Section II and I I I

discuss early ftoorplanning challenges and existing

tools and methodologies. Section IV describes the

techniques that are a good fit for early

floorplanning and were tried in this paper. Section

V discusses their results as well as our experience

with existing tools. Section VI concludes the paper

with future work.

II. EARLY FLOORPLANNING CHALLENGES

Floorplanning for chip integration is considered

a mature area. While early floorplanning shares the

basic challenges of the traditional floorplanning, it

has the properties that are rarely dealt with in the

traditional floorplanning:

- Handling high-level netlists without interior

details that consist of a mix of super blocks

(several square mm) and large or small

blocks (a few square um) in hierarchical

structures such as chiplets, units and

macros.

- Satisfying constraints to place 10 blocks at

the chip's edge to ease package fan-out;

proximity constraints to keep key

components close for delay and routing;

constraints to control area, aspect ratio,

orientation, symmetry and modularity; and

white space for global routing.

- Convenience and runtime scalability for fast

yet "good" floorplan generation of many

design alternatives and providing a simple

interface to system designers, who are not

chip integrators.

When applied at the very early stages of design,

the traditional placement and floorplanning tools do

not perform well. Placement tools are primarily

optimized to place millions of tiny standard cells

and not tuned for a small number of large blocks,

typical in early floorplanning. While some

floorplanning tools do handle large blocks, in our

experience, it is not convenient to impose enough

constraints and obtain the floorplans that are both

optimized and legalized. These limitations force

even experienced server chip integrators prefer a

semi-manual floorplanning method with the aid of

their own simple scripts. This manual method may

work for a design based on a preceding design.

But, it becomes quite inefficient for design space

exploration, when a wide range of configurations

need to be considered. This is where an

automated floorplanning method is necessary.

III. EXISTING FLOORPLANNING TOOLS

In this section, we review several existing tools

in more detail for the early floorplanning problem

described above. All of the work on floorplanning

and placement could not be mentioned here, but

we believe that these are representative and

frequently referenced ones.

A. Industry Tools

We began with commercial floorplanning tools,

which include features for design planning, claimed

389

to be similar to early floorplanning. For example,

grouping constraints allow the users to specify the

proximity of a set of blocks based on the designer's

experience with "good" floorplans. The users may

try to preserve absolute spacing between blocks

for routing, if the blocks are heavily connected, or

indicate a fixed location of certain blocks. However,

commercial tools have difficulty handling a system

level netlist, consisting of large cores, tiny

interfaces, as well as long and narrow buses.

When placing the blocks inside a predefined region

becomes difficult, the tools usually stop before

optimizing the delay or the desired proximity of the

blocks. As a result, manual modification to the

generated floorplans is often necessary for

reasonable quality.

We also applied IBM's placer [2], which is used

primarily for standard cell placement, to some early

floorplanning examples to study the limitations of

placement tools for early floorplanning, such as

- Poor grouping and alignment of blocks

- Lack of recognition of bus-type interconnects

- Legalization failure, if area utilization is high

- Difficulty in incorporating other objective

functions, such as power and temperature

Nonetheless, the IBM Placer did tend to find good

wire length solutions - one important objective.

B. Academic Tools and Research

Academic floorplanning and placement

research has covered a broad array of optimization

styles. We reviewed the studies on mixed-sized

placement for the early floorplanning problem since

they generally include state-of-the-art floorplanning

and placement techniques to place a few large

blocks along with many standard cells [3]. For

example, the most recent version of Capo [4]

produces floorplans by using top-down partitioning

on a fixed-size outline and simulated annealing

based placement. mPL6 [5] is based on force

directed algorithms, where the floorplanning

problem is modeled as a system of masses and

springs. The latest version of NTUplace [6] also

uses an analytical placement technique to consider

pre-placed blocks and special density function

control techniques. While the mixed-sized

placement techniques are able to handle large

blocks, it is not clear that they are suitable for early

floorplanning, where typically many blocks are

extra large with the constraints described above. In

Section V, we discuss our experience with Capo.

Simulated annealing is another well-known

optimization algorithm that has been applied to the

floorplanning problem in many incarnations. Since

simulated annealing based tools produce legalized

solutions and have few limits on the optimization

objective, most work on physical planning for

architecture evaluation and multi-objective

optimization is based on simulated annealing [7, 8].

However, most floorplan representations used

during annealing are based on block-packing, and

generally not amenable to the reservation of white

space that may be required. Further, the

theoretical flexibility provided by the cost function is

limited in practice due to the large number of times

it must be evaluated, leading to significant run

times even for cost functions with polynomial

complexity. In addition, they often require fine

tuning of various input parameters, which is

inefficient for early chip planning to quickly

evaluate many candidate designs.

IV. USEFUL ANALYTICAL TECHNIQUES FOR

EARLY FLOORPLANNING

In this section, we discuss the analytical

techniques that can be adopted by the traditional

tools to address the early floorplanning problem

described in Section I I. Note that they can be

replaced with any existing similar techniques but

we chose them for quick implementation and

evaluation by leveraging the tools available to us.

Physical planning of the new design often

begins by scaling the macros composing system

components such as cores, accelerators, and

caches, for technology and architectural changes.

Since the relative size and aspect ratio of the

macros generally change from the preceding

design, the original floorplan needs to be adjusted

after scaling, to remove overlaps and unnecessary

white space. Such incremental floorplanning can

be performed well by migration or annealing

algorithms that move blocks while maintaining their

relative location.

Once system components are sized and

shaped by the incremental floorplanning, they need

to be placed by observing a set of constraints. As

our attempts to impose the constraints with existing

tools were not very successful, we developed a

constraint-driven floorplanner based on IBM

390

Haifa's CSP (Constraint Satisfaction Problem)

solver [9] to explicitly specify the constraints. In

addition, we developed ILP (Integer Linear

Programming) [10] and NLP (Non-Linear

Programming) [11] based floorplanners to exploit

implicit and explicit hierarchy in the netlists, which

is common in server chip design, and optimize

floorplans for multiple objectives, which is

becoming more important with advanced

integration and technology scaling. We chose ILP

and NLP over other approaches for relatively quick

and easy implementation of analytical cost

functions with heuristics.

The details of the floorplanning techniques that

were tried are described in the following

subsections, and the floorplans generated are

discussed in Section V, along with their pros and

cons for early floorplanning.

A. Migration Algorithm based Floorplanning

We tried incremental floorplanning based on a

design migration technique called MASH [12].

MASH has been primarily used for layout migration

to new technologies, with the goal of retaining the

good placement from the original design. The goal

is achieved by adjusting the size and relative

placement of the individual devices. MASH has

been successfully applied to several memory

arrays in server chips.

Layout migration is quite similar to incremental

floorplanning, where the macros correspond to the

devices in the layout. The MASH based

floorplanner consists of four steps:

(1) Extract the floorplan of the preceding design

and build a hierarchy graph in which nodes

correspond to the macros.

(2) Use a scan line algorithm to detect

relationships between any pair of macros and

introduce weighted linear constraints on

macro's coordinates and hard constraints to fix

target macro size.

(3) Generate a new floorplan by minimizing the

penalty function, which increases if the

relationships are not retained, with a linear

programming solver.

(4) Migrate the macros to the new design using

MASH to maximize compaction with ground

rules encoded as hard constraints.

In step (2), the relationships of interest include: A.

two macros share a common boundary segment,

B. the macros are mutually visible, C. the macros

share a common straight global wire, and D. two

macros belong to a step-and-repeat array.

MASH is not recommended for whole chip

floorplanning, because it may not be able to retain

the relationships if the design is too large. In

addition, run time grows with LP problem size.

Nonetheless, the number of macros in our

experiments ranges from 2 to 20K and the

corresponding run times are 6 to 135 seconds,

which is acceptable for system-level floorplanning.

While the MASH algorithm is used for our study,

other annealing methods adopted by existing tools

[4, 5] can be also explored.

B. Constraint Solver based Floorplanning

CSP is a mathematical problem that consists

of a set of variables and their constraints, and can

be applied to a large class of problems. The CSP

solvers have been used in placement problems [9],

but not widely because the domains of possible

values for locating a block are very large. This

approach is more viable for early floorplanning

because the number of blocks is relatively small

and fewer pins are considered without exact

assignment. Although the generated floorplans

may need refinement, they can quickly suggest

several options to the designer and help the user

to define new constraints.

The constraint-driven floorplanner developed is

based on IBM Haifa's CSP solver [9], with the

floorplanning problem modeled as follows:

• Domains: for all variables, the initial domain

is all possible positions on the Chip.

• Variables: for every macro, a variable for its

position on the chip (x and y coordinates).

• Constraints:

- A global constraint to avoid overlaps

- Maximum distance constraints to keep

pairs of macros close for wiring

- Minimum distance constraints to keep

pairs of macros apart for power and

temperature reasons

- Specific location constraints for preferred

locations, for example a central bus.

- Overall minimization of area by an

iterative scheme

In addition, we used a variable ordering based on

the wiring of the blocks, starting from the central

391

instances outward. We modified the value ordering

so that values that failed are removed along with

their surrounding values, so as to avoid thrashing.

C. Linear / Non-linear Programming based

Floorplanning

The advantage of ILP or NLP based analytical

modeling is that formulated objectives and

constraints can be quickly implemented and

evaluated with existing solvers. Our experiments

started with basic floorplanning objectives and

constraints that were formulated in linear functions

and solved by CPLEX [10]. The half perimeter wire

length (HPWL) is formulated as the sum of

Manhattan distance between blocks. The non

overlap constraints are given with two binary

variables for every pair of blocks as proposed in

[13]. Since the formulation of the constraints

described in Section " is not straightforward, we

added some heuristics to the ILP based

floorplanner. For instance, the proximity constraint

is implemented with grouping. The Chip-level netlist

is partitioned into several groups composed of the

blocks to place close. The groups can be further

divided as needed, even though a 2-level hierarchy

was sufficient for our examples as shown in Figure

1. In the top level, we consider these groups as

soft blocks with a fixed area and a predefined

range of aspect ratios, and the floorplan of these

groups are solved by the ILP solver. Based on the

top-level results, we keep the relative locations of

these groups, and work on the bottom-level, where

the blocks are confined inside their groups. In the

bottom level, the binary variables for the non

overlap constraints only exist inside a group. This

hierarchical approach may not produce the globally

optimal solution, but does guarantee of optimality

at each level.

One limit of the ILP approach is poor runtime

scalability. The hierarchical approach reduced the

problem size, but it still is not sufficient for larger

designs. For large deSigns, we transformed the

discrete linear functions to non-linear formulas

similar to density constraints in [5] and use IPOPT

[11] as a solver. The NLP based floorplanning is

generally poor at legalization, thus an extra step

may be needed to remove overlaps. In addition to

HPWL, we developed additional objective functions

for power density and thermal costs.

Table 1. Summary of the techniques described in Section III for early floorplanning.

+(+) : (very) efficient, +/- : neutral, -(-) : (very) inefficient.

Constraints

Legalization

Multi-objectives

Hierarchy

Scalability

Incremental Change

MASH

Best for incremental

floorplanning

- -

++

+/-

++

-

++

v. EARLY FLOORPLANNING EXAMPLES

In this section, we apply the tools introduced in

Section I I I and IV to some of the floorplans

produced for an abstract design derived from an

IBM high-performance network processor chip,

Wire Speed Power™ Processor [14] with most top

level units except the 10 blocks. The original chip

size is 16.7mm x 24.5mm in the IBM 45nm

technology, and scaled to a 22nm technology for

early chip planning. Figure 1 illustrates a logical

view of the example design netlist, where four

chiplets with processor cores and caches (EX),

accelerators (EA, EB, EC, ED) and controllers

(EM, EN) are connected to the central bus (PB) via

bus interface (PBI). In addition to the data paths

shown in the figure, the netlist includes control bits

and pervasive signals. Figure 2 shows the resulting

floorplans.

For the commercial floorplanner, we used

grouping and spacing parameters to force the main

functional blocks to be placed with the bus

interface. However, as shown in Figure 2(a), the

generated floorplan is far from ideal in terms of

area, and even some blocks are far away from the

bus or bus interface. Capo tries packing the blocks

to optimize HPWL and area, when the preferred

proximity between the blocks and the bus is not

explicitly specified. The quality of the results might

improve with more tuning of user parameters. Even

for the simple example, the results confirm the

difficulty of imposing constraints, including

proximity. The physical distance between the main

functional blocks and their bus interface, or

between the interface bocks and the bus has direct

impact on chip performance, as well as global wire

congestion. The HPWL optimization, which is

typical for many existing tools, fails to consider this.

CSP ILP/NLP

Better for constraint- Better for multi-objective,

392

driven floorplanning hierarchical floorplanning
++ +/-

+/- +/-

+/- ++

+ +

- +/-

- -

In the CSP based floorplanner, the constraints

are specified and well satisfied, as shown in Figure

2(c). However, this approach is not the best at area

optimization and the chip size is larger than that of

the Capo floorplan shown in Figure 2(b). For the

ILP or NLP based approaches, we used heuristics

to capture the proximity by exploiting the explicit

and implicit hierarchy in the netlist, and did

floorplanning in the top-level first and lower levels

next. In addition, area and HPWL are optimized at

each level. Figure 2(d) shows that the ILP based

floorplanner performs well in the lower levels, while

the top-level floorplan needs improvement on area.

The ILP based floorplanner slows down

significantly as the number of blocks in the netlist

increases, while the NLP based floorplanner scales

well, but often requires overlaps to be fixed.

While we discussed the different floorplanning

approaches with a simple example, similar

observations were made with real server chip

designs. In fact, the limitations discussed above

are often amplified in floorplanning 3D chips, which

have more constraints and objectives to consider.

To attack the early floorplanning challenges, we

need a better solution.

Figure 1. Logical view of the floorplan example.

(a) Commercial tool's
floorplan

EX EX

EX EX

(c) CSP based floorplan

r M
EB

ED

EX

EN EA

EC
PB

EX

a

(b) Capo floorplan

EX

EX

(d) ILP based floorplan

Figure 2. Floorplanning results on the example illustrated in

Figure 1.

VI. CONCLUSION

In this paper, we addressed the need of

automated floorplanning methods to place high

level blocks with the constraints in the very early

stages of server design, which differs from the

traditional floorplanning of millions of diverse sized

bocks during the later stage of chip integration.

The automation of early floorplanning is essential

for efficient design space exploration, but there

exist no "good" automated tools yet. To address

this issue, we reviewed several existing

floorplanning tools and described our experience in

using them for early floorplanning. We also tried

and evaluated a few techniques that can improve

the existing tools for the early floorplanning

problems. The preliminary results were promising,

but more research is required on this important

problem.

REFERENCES

1. J. Shin, et aI., "Early Chip Planning Cockpit", Design,
Automation and Test in Europe, 201 1.

393

2.

3.

4.

5.

6.

7.

8.

N. Viswanathan, et aI., "RQL: Global Placement via

Relaxed Quadratic Spreading and Linearization", Design

Automation Conference, 2007.

S. N. Adya, et aI., "Unification of partitioning, placement

and floorplanning," International Conference on Computer

Aided Design, 2004.

UMICH Physical Design Tools, http://vlsicad.eecs.umich.

edu/BKlPDtools.
T. F. Chan, et aI., "mPL6: enhanced multilevel mixed-size

placement", International Symposium on Physical design,

2006.

NTUplace: A VLSI Placement Tool, http://eda.ee.ntu.edu.

tw/w04/download/ntuplace.php.

J. Cong, et aI., "Microarchitecture evaluation with physical

planning," Design Automation Conference, 2003.

M. B. Healy, et aI., "Multi-objective microarchitectural
floorplanning for 20 and 3D ICs," IEEE Trans. on

Computer-Aided Design of Integrated Circuits and

Systems, Vol. 26, No. 1, pp. 38-52, 2007.
9. B. Dubrov, et aI., "Pin Assignment using Stochastic Local

Search Constraint Programming", International Conference

on Priniciples and Practice of Constraint Programming,

2009.

10. IBM ILOG CPLEX Optimizer, http://www-0 1.ibm.com/

software/integration/optimization/cplex-optimizer.

1 1. Interior Point OPTimizer, https:/Iprojects.coin-or.org/lpopt.

12. F.L. Heng, et al., "A VLSI Artwork Legalization Technique
Based on a New Criteria of Minimum Layout Perturbation,"

International Symposium on Physical Design, 1997.

13. S. Sutanthavibul, et aI., "An analytical approach to

floorplan design and optimization," Design Automation

Conference, 1991.

14. C. Johnson et aI., "A Wire-Speed PowerTM Processor:

2.3GHz 45nm SOl with 16 Cores and 64 Threads," ISSCC,

20 10.

