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Evaluating Fast Algorithms for Convolutional
Neural Networks on FPGAs
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Abstract—In recent years, convolutional neural networks
(CNNs) have become widely adopted for computer vision tasks.
Field-programmable gate arrays (FPGAs) have been adequately
explored as a promising hardware accelerator for CNNs due
to its high performance, energy efficiency, and reconfigurabil-
ity. However, prior FPGA solutions based on the conventional
convolutional algorithm is often bounded by the computational
capability of FPGAs (e.g., the number of DSPs). To address
this problem, the feature maps are transformed to a special
domain using fast algorithms to reduce the arithmetic complex-
ity. Winograd and fast Fourier transformation (FFT), as fast
algorithm representatives, first transform input data and filter
to Winograd or frequency domain, then perform element-wise
multiplication, and apply inverse transformation to get the final
output. In this paper, we propose a novel architecture for imple-
menting fast algorithms on FPGAs. Our design employs line
buffer structure to effectively reuse the feature map data among
different tiles. We also effectively pipeline the Winograd/FFT pro-
cessing element (PE) engine and initiate multiple PEs through
parallelization. Meanwhile, there exists a complex design space
to explore. We propose an analytical model to predict the
resource usage and the performance. Then, we use the model
to guide a fast design space exploration. Experiments using
the state-of-the-art CNNs demonstrate the best performance
and energy efficiency on FPGAs. We achieve 854.6 and 2479.6
GOP/s for AlexNet and VGG16 on Xilinx ZCU102 platform using
Winograd. We achieve 130.4 GOP/s for Resnet using Winograd
and 201.1 GOP/s for YOLO using FFT on Xilinx ZC706 platform.

Index Terms—Convolutional neural network (CNN), fast algo-
rithm, fast Fourier transformation (FFT), field-programmable
gate array (FPGA), Winograd.

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) have
achieved remarkable performance for various computer

vision tasks, including image classification, object detection,
and semantic segmentation [8], [9]. The significant accuracy
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improvement of CNNs comes at the cost of huge computa-
tional complexity as it requires a comprehensive assessment of
all the regions across the feature maps [10], [11]. Toward such
overwhelming computation pressure, hardware accelerators,
such as graphics processing unit (GPU), field-programmable
gate arrays (FPGAs), and application specific integrated cir-
cuit (ASIC) have been employed to accelerate CNNs [2],
[12]–[24]. Among the accelerators, FPGAs have emerged as
a promising solution due to its high performance, energy effi-
ciency, and reprogramability. More importantly, high level
synthesis (HLS) using C or C++ has greatly lowered the
programming hurdle of FPGAs and improve the productiv-
ity [25]–[27].

A CNN typically involves multiple layers, where the output
feature maps of one layer are the input feature maps of the
following layer. Prior studies have shown that the computation
of the state-of-the-art CNNs is dominated by the convolutional
layers [12], [13]. Using the spatial convolution algorithm, each
element in the output feature map is computed individually by
using multiple multiply accumulate (MAC) operations. While
the prior FPGA solutions of CNNs using this algorithm have
demonstrated preliminary success [1], [2], [4]–[7], [12], [13],
[28]–[33]. Table I shows the resource utilization of recent
FPGA accelerators. In these designs, it can be concluded that
DSP is the most consumed resource since the operations in a
typical CNN mostly consists of MAC units and the multiplier
is usually implemented by DSP on FPGAs.

Besides the spatial convolution algorithm, some designs
choose to flatten convolution to general purpose matrix mul-
tiplication (GEMM). However, this approach does not reduce
the number of multiplications. With the insight that higher
DSP efficiency is possible if the number of multiplications
can be reduced, fast algorithms are widely used to reduce the
arithmetic complexity of convolutional operation. It has been
demonstrated that the Winograd Fast algorithm and classic
FFT algorithm can dramatically reduce the arithmetic com-
plexity. When applying FFT and Winograd algorithms, the
input feature map and filter are transformed to the correspond-
ing domain, then perform element-wise matrix-multiplication
(EWMM). The reduction degree depends on the parameters of
fast algorithms. For example, using the Winograd algorithm
with 6 × 6 input tile size can bring 4× multiplication reduc-
tion for 3 × 3 filters and using the FFT algorithm with 8 × 8
input tile size can bring 3.45× multiplication reduction for
3 × 3 filters.

More importantly, the current trend of CNNs is toward
deeper topologies with small filters. For example, VGG16 and
YOLO only use 3×3 filters [34], [35], and 3×3 and 5×5 fil-
ters are widely used in Resnet and Googlenet [11], [12]. And
it has been demonstrated that the fast Winograd algorithm and
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TABLE I
RESOURCES UTILIZATION IN PREVIOUS FPGA IMPLEMENTATIONS

(a) (b)

Fig. 1. Comparison of OaA and OaS dataflow. We assume the stride S is 1. (a) OaA-based fast algorithm. (b) OaS-based fast algorithm.

FFT can be used to derive efficient algorithms for CNNs with
small filters [19]. This opens up the opportunities of using fast
algorithms for efficient implementation of CNNs. However,
using fast algorithms on FPGAs is appealing, several prob-
lems remain. First, it is crucial that the design can not only
minimize the memory bandwidth requirement but also match
the memory throughput with the computation engines. Second,
there exists a large design space when mapping the fast algo-
rithm onto FPGAs. It is very difficult to reason about which
designs will improve or harm the performance.

In this paper, we comprehensively evaluate the Winograd
fast algorithm [36] and fast Fourier transformation (FFT)
algorithm which can dramatically reduce the arithmetic com-
plexity, and improve the performance of CNNs on FPGAs.
Using these two fast algorithms, a tile of elements in the
output feature map are generated together by exploiting the
structural similarity among them. This helps to cut down
the arithmetic complexity by reducing the required number
of multiplications. Then a universal framework of the FPGA
accelerator is proposed. We design a line-buffer structure to
cache the feature maps for the fast algorithm. Each line rep-
resents one row in the input feature maps, and we rotate the
line buffers so that the input data can be reused when the fil-
ter sliding. In our design, we apply the Cooley–Turkey FFT
algorithm and Winograd algorithm. We design two efficient
PE architectures for both algorithms and initiate multiple PEs
through parallelization. Finally, we develop analytic models
to estimate resource usage and predict the performance. We
use the models to explore the design space and identify the
optimal design parameters.

A preliminary version of this paper was reported in [37].
In this paper, we propose an accelerator framework for both
the Winograd algorithm and FFT algorithm. We design an
efficient PE architecture with highly optimized FFT imple-
mentation. Besides, we generalize the performance model
and resource model for both Winograd algorithm and FFT
algorithm.

This paper makes the following contributions.
1) We propose a framework for efficient implementation of

CNNs using Winograd and FFT algorithm on FPGAs.
2) We propose an architecture that employs line-buffer

structure, efficient and fully pipelined PE, and PE
parallelization.

3) We develop analytical resources and performance mod-
els and use the models to explore the design space to
identify the optimal parameters. The model is integrated
with an automatic tool-chain which can automatically
generate the implementation of fast algorithms.

Experiments using the state-of-the-art CNNs demonstrate
the best performance and energy efficiency of CNNs on
FPGAs. We achieve an average 1006.4 and 2601.3 GOP/s for
the convolutional layers and 854.6 and 2479.6 GOP/s for the
overall AlexNet and VGG on ZCU102 platform, respectively.
This comes to 36.2 GOP/s/W energy efficiency for AlexNet
and 105.4 GOP/s/W energy efficiency for VGG16. We achieve
an average 163.1 and 201.1 GOP/s for the convolutional lay-
ers and 130.4 and 201.1 GOP/s for the overall Resnet and
YOLO on ZC706 platform, respectively. This comes to 13.8
GOP/s/W energy efficiency for Resnet and 21.4 GOP/s/W
energy efficiency for YOLO.

II. BACKGROUND

A. CNN Basics

CNN is a class of deep, feed-forward artificial neural
networks in machine learning. In general, CNNs is composed
of a series of layers and each layer, in turn, is composed of
input feature maps, filters, and output feature maps. Filters
which have learned features in the training process are applied
to extract some certain features from input images as shown
in Fig. 1(a). Among all layers in a typical CNN, convolu-
tional layers account for the major computation. CNNs are
trained offline and FPGAs are mainly used for accelerat-
ing the inference phase [2], [3], [13]. The state-of-the-art
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CNN models are very large and deep which involve extensive
calculation.

The spatial convolution algorithm is composed of six for
loops as shown in the following equation:

Out(k, i, j) =
M∑

t=1

r∑

p=1

r∑

q=1

F(k, t, p, q) × In(t, i ∗ S + p, j ∗ S + q).

(1)

Each element in the output feature map is computed indi-
vidually by multiplying and accumulating the corresponding
input feature data with filters. By flattening the input feature
maps and rearranging the filters, the spatial convolution can
be mapped to GEMM. This method will increase the local
memory requirement since the pixels in the input feature maps
will be copied for multiple times in flattening process. GEMM
is widely used in GPU implementation because of its versatil-
ity for different layer types. However, GEMM contributes no
arithmetic reduction in CNN implementation.

B. Fast Algorithms for CNNs

In addition to spatial algorithm and GEMM, fast algorithms
like Winograd and FFT have been applied to fasten con-
volutions. Defying spatial convolution algorithm where each
element in the output feature map is computed individually,
the fast algorithms can generate a tile of output feature maps
together by exploiting the structural similarity among the ele-
ments in the same tile of the input feature map. More clearly,
given a size n × n input tile and r × r filter, we employ the
fast algorithms to generate a size m × m (n = m + r − 1)
output feature map. Hence, convolution based on these fast
algorithms can be described by a common formula

Out = Inverse_Transform
[
Transform(In) � Transform(F)

]

(2)

where � represents EWMM, In, Out, and F are input tiles,
output feature maps, and filters, respectively. According to the
formula, these fast algorithms are composed of the following
three stages.

1) Input and Filter Transformation: The first stage is to
transform an input tile and filter to the same shape.
Winograd and FFT convolution employ different trans-
form functions which would be introduced later.

2) Element-Wise Multiplication: Then in both algorithms,
EWMM are performed with the obtained intermediate
matrices. The tiny difference lies in that FFT convolu-
tion uses complex data so that it requires more compute
resources.

3) Inverse Transformation: The final stage is to transform
the EWMM result to the original convolution result.
The inverse transform functions also differ according to
functions used in the first stage.

Then we give more details about Winograd-based and FFT-
based convolution separately. Note that though 1-D-Winograd
and 1-D-FFT could be applied to convolution, we refer convo-
lutions using 2-D-Winograd and 2-D-FFT as Winograd-based
and FFT-based convolution, respectively.

1) Winograd-Based Convolution: Winograd documented a
technique for computing polynomial multiplication which is
equivalent to convolution operation. And Winograd applied the

Chinese remainder theorem to produce a minimal algorithm
for it.

Let us denote the result of computing m outputs by con-
volving the r-tap filter with inputs as F(m, r). For example,
the spatial algorithm for F(2, 3) requires m × r (2 × 3 =
6) multiplications, while the Winograd algorithm computes
F(2, 3) in the following way, which only needs n = m + r − 1
(4) multiplications:

In = [
z0 z1 z2 z3

]T
F = [

x0 x1 x2
]T Out = [

y0 y1
]T

[
z0 z1 z2
z1 z2 z3

]⎡

⎣
x0
x1
x2

⎤

⎦ =
[

m1 + m2 + m3
m2 − m3 + m4

]
=

[
y0
y1

]
(3)

m1–m4 are

m1 = (z0 − z2)x0 m2 = (z1 + z2)
x0 + x1 + x2

2

m4 = (z1 − z3)x2 m3 = (z2 − z1)
x0 − x1 + x2

2
. (4)

Accordingly, 2-D convolution using Winograd algorithm
F(m×m, r×r) can be derived from nested F(m, r) as follows:

Out = AT[(
GFGT) � (

BT InB
)]

A (5)

where transformation matrices A, B, and G can be derived
offline once m and r are determined. Therefore, the transform
functions for input and filter are

Transform(In) = BT InB

Transform(F) = GFGT (6)

and the inverse transform function is

Inverse_Transform(E) = ATEA. (7)

The constants in transformation matrices are computed using
polynomial interpolation.

2) FFT-Based Convolution: FFT was proposed by Cooley–
Turkey in 1995 to accelerate machine’s computing speed,
which can reduce constant complex multiplications from
O(N2) to O(N log N) with no accuracy loss. The Cooley–
Turkey 1-D-FFT is computed as follows:{

X(k) = X1(k) + Wk
NX2(k)

X
(
k + N

2

) = X1(k) − Wk
NX2(k)

k = 0, 1, 2, . . . , N/2 − 1

(8)

where X1(k), X2(k), Wk
N is defined as follows:{

X1(k) = ∑N/2−1
r=0 x(2r)W2rk

N

X2(k) = ∑N/2−1
r=0 x(2r + 1)W2rk

N

Wk
N = e−2iπk/N . (9)

In (8) and (9), FFT is inducted from small-scale discrete
Fourier transformation divided according to the odevity, which
is also named butterfly computation. It should be noted that
the Cooley–Turkey algorithm is only valid when FFT size is
a power of 2. Fig. 2 shows a brief example of FFT algorithm
with FFT size = 4. In this example, it takes two stages to
complete FFT. In these stages, several butterfly computations
are performed with two points (Radix-2 FFT). 2-D-FFT algo-
rithm should be conducted from row and column dimension
with 1-D-FFT respectively.

Similar to the Winograd algorithm, 2-D-FFT can be inte-
grated in convolution. The transform functions for input and
filter are

Transform(In) = FFT(In)

Transform(F) = FFT(pad(F)) (10)
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Fig. 2. Radix-2 FFT algorithm with N = 4.

TABLE II
DIFFERENT IMPLEMENTATION ALGORITHM FOR CONVOLUTION

where pad means to pad the filter with zeros to the same size
as input. The inverse transform function is

Inverse_Transform(E) = crop(IFFT(E)) (11)

where crop represents cropping the intermeidate result to the
output size.

3) Comparison: Table II compares the algorithms for con-
volution which shows that the Winograd and FFT algorithms
can effectively reduce the arithmetic complexity with transfor-
mation overhead.

Though the Winograd algorithm and FFT algorithm have a
similar flow, they differ in the following aspects.

1) Multiplication Savings: In fast algorithms, only stage 2
needs multiplications which depend on the input size.
For Winograd algorithms, the number of multiplications
is n2 which means one multiplication per input. For
example, for a 4 × 4 output tile generated by con-
volving a 6 × 6 input tile with a 3 × 3 filter, spatial
convolution needs 42 × 32 = 144 multiplications,
while the Winograd algorithm only needs 6 × 6 = 36
multiplications. However, FFT algorithm involves com-
plex numbers. Generally, one complex multiplication
needs four real multiplications. In fact, by applying the
technique in [38], a complex multiplication only needs
three real multipliers as shown in the following equation:

(a + ib) × (c + id) = (ac − bd) + i(ad + bc)

(ac − bd) = b(c − d) + c(a − b)

(ad + bc) = b(c − d) + d(a + b). (12)

Besides, in deep learning scenario, the input is usually
real value which makes the transformed matrix of FFT
has Hermitian symmetry [39] as shown in the following
equation:

X(i, j) = X(−i mod n,−j mod n). (13)

In the example of Fig. 2, we can observe that X(0) and
X(2), and X(1) and X(3) show Hermitian symmetry.

TABLE III
PARAMETERS OF DIFFERENT TILE SIZE IN FAST ALGORITHMS

Hermitian symmetry can reduces the number of com-
plex multiplications from n × n to n × (�(n/2)� + 1).
To conclude, the number of multiplications reduce to
3n(�(n/2)� + 1) ≈ 1.5 per input pixel in EWMM stage.
Table III shows that the FFT algorithm must use tile
size at least 16 × 16 to equal the multiplication stage
complexity of Winograd 6 × 6 tile.

2) Constants Ranging: The constant multiplications in the
transformation stage can be replaced with shift opera-
tions which can be implemented using look up tables
(LUTs) on FPGAs. Therefore, the range of constants
determines the precision requirement. In other words,
the larger or smaller constants are, the more LUTs are
required. So we compare the constants in the Winograd
and FFT algorithms. In Winograd, the constants are deter-
mined by polynomial interpolation. In FFT, the constants
are twiddle factors Wk

N . In Table III, we list the con-
stants with some commonly used tile size from which
we observe that the Winograd algorithm has a higher
precision requirement with the same input tile size.

III. DATAFLOW

Both Winograd-based and FFT-based convolutions employ
tiles as their basic units. There are two widely used methods
in signal processing to split feature maps into tiles.

1) Overlap-and-Add (OaA): In this method, the input is
split into several tiles without overlap. Then the output
tiles are overlapped by r−1 and added together to create
the final result, as shown in Fig. 1(a).

2) Overlap-and-Save (OaS): In this method, as shown in
Fig. 1(b), output tiles which come from the overlapped
input tiles are concatenated into resulting convolution.

Though these two methods have the same arithmetical com-
plexity, OaA method can lead to severe memory conflict in
FPGA implementation. As shown in Fig. 1(a), the overlapped
parts share the same address and multiply-and-accumulate
(MAC) operation requires at least two ports in block ran-
dom access memory (BRAM) when the task is fully pipelined.
Therefore, we choose the OaS method as our dataflow to solve
data dependency issues.
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Listing 1. Dataflow of the convolution with OaS.

Fig. 3. Architecture overview.

Together with the OaS method, we apply fast algorithms in
the generation of the output tiles as shown in Fig. 1(b). The
pseudo code of the fast convolution algorithm can be written
as that in Listing 1.

IV. ARCHITECTURE DESIGN

Based on OaS, we propose an FPGA accelerator design for
CNNs based on Winograd-based and FFT-based convolutions.
However, there exist several challenges. First, the convolution
layers have high memory bandwidth demand. We observe that
the neighboring tiles share input feature map data both hor-
izontally and vertically. We leverage on this observation to
design line buffers to maximize the data reuse (Section IV-B).
Second, different from the spatial convolution algorithm, the
fast algorithms generate a tile of output feature maps at a
time. This requires all the elements in the input tiles and fil-
ters are ready at the same time before the transformation starts.
We design an efficient PE engine for the Winograd algorithm
(Section V-A) and FFT algorithm (Section V-B). Then we
instantiate multiple PEs through parallelization (Section V-C).
Third, different implementation parameters (tile size and par-
allelization degree) form a large design space with multiple
dimension resource and bandwidth constraints. We propose
an analytical model for performance prediction and leverage
it to explore the space efficiently (Section VI).

A. Architecture Overview

Fig. 3 presents the architecture overview of convolutional
layer based on the fast algorithms on FPGAs. We identify
data reuse opportunities in the feature maps of neighboring
tiles. To this end, we naturally implement line buffers. There
are multiple channels of input feature maps (M) as shown
in Fig. 1. Each line of the line buffers stores the same rows
across all the channels. PEs (Winograd PE or FFT PE) fetch

data from line buffers. Concretely, given a n×n input tile, a PE
will generate a m×m output tile. We initiate an array of PEs by
parallelizing the processing of the multiple channels. Finally,
we use double buffers to overlap the data transfer and compu-
tation. All the input data (e.g., input feature maps and filters)
are stored in the external memory initially. The input and out-
put feature maps are transferred to FPGAs via a first-input,
first-output (FIFO). However, the size of the filters increases
significantly as the network goes deeper. It is unpractical to
load all the filters to on-chip memory. In our design, we split
the input and output channels into several groups. Each group
only contains a portion of filters. We load the filters group
by group when they are needed. In the following, we assume
there is only one group for easy illustration.

B. Line Buffer Design

On-chip memory is not always sufficient enough to store the
entire feature maps and weights. Therefore, many previous
works applied loop tiling strategy [3], [6], [13], [28], [37].
Different tiling strategies can lead to different data reuse
opportunities. In our design, we choose to tile the loops L1–
L3 in Listing 1 as shown in Fig. 4(a). Because when the filter
sliding across feature maps, the relationship between the data
of different channels is irrelevant or independent.

There exist data reuse opportunities both horizontally and
vertically when tiling loop L1. Clearly, two neighboring tiles
share (r −1)×n elements for each input feature map as shown
in Fig. 1(b). To exploit the data reuse opportunities, we store a
few lines in the on-chip memory. Each input line buffer contains
M ×W elements, where M is the number of input channels and
W is the width of the input feature maps as shown in Fig. 3.
Each output line buffer contains N × C elements, where N is
the number of output channels and C is the width of the output
feature maps as shown in Fig. 1(b). However, different layers
may have different feature map width and channels. In practice,
we set W as the maximal width of all the feature maps.

To reuse the data, we set the tiling factor of L1 to m and
store n+m input lines in on-chip memory in total and rotate the
lines as a circular buffer. More clearly, initially, fast algorithm
engines will read the first n lines from the line buffer directly,
meanwhile, the next m lines of the line buffer will load data
from external memory. The computation of the n lines and the
transfer of m lines are done in parallel by employing the double
buffer design. Note that the stride between two neighboring
tiles in the fast algorithm is m. Therefore, fast algorithm PE
engines will skip the next m lines and process the following
n lines from the line buffer and the skipped m lines will be
overwritten by the new load data from the external memory.
During this process, if it reaches the bottom of the line buffer,
it will rotate to the beginning of the line buffer.

C. Loop Tiling

Generally, the on-chip memory of FPGAs is not large
enough to hold the entire feature maps because the number of
channels increases exponentially as the network goes deeper.
Hence, we tile the feature maps so that it can be accommo-
dated in the line buffers. Specifically, we tile L3 and L4 loops
by the factor Tm and Tn, which means that the accelerator
handles Tm channels of the input feature maps and Tn chan-
nels of the output feature maps as shown in Fig. 4. We do not
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(a) (b)

Fig. 4. (a) Loop tiling for limited on-chip memory. (b) Local memory promotion for fast algorithms.

Fig. 5. General PE design.

tile L1 and L2 loops. This is because it will lead the complex
data dependency in the boundary.

V. PE DESIGN

Once input data are ready, we feed them to PEs to perform
convolution. Since both Winograd-based and FFT-based con-
volutions have three stages as described in Section II-B, we
propose a general PE design for them.

Fig. 5 illustrates the PE details. Three stages (input and
filter transform, EWMM, and output inverse transform) are
pipelined so that different tiles can be effectively overlapped.
We also use an additional stage to accumulate the output
tiles from different input channels. The PE has multiple mod-
ules to perform these stages. However, due to the algorithm
difference, the PE has to be specialized as below.

A. Winograd PE Design

In Winograd PE design, we choose to transform the filters
online. In this way, not only on-chip BRAM resources are
saved, but also cause no extra delay because the transforma-
tion of input and filter can be done in parallel. Observing that
transformation matrices (B, G, and A) can be determined as
long as the input tile size and the filter size are given, we
replace the multiplications in the transformation stage with
constant multiplications which are computed using shift oper-
ations. The shift operation can be easily implemented using
LUT arrays, therefore the DSP utilization can be reduced. The
multiplications in stage 2 are performed in parallel, so we
store the intermediate data matrices in registers to improve the
memory bandwidth as it alleviates the memory bank conflicts.

B. FFT PE Design

Traditional FFT implementations focus on data with the
large size which may contain thousands of signals [40], [41].
In these scenarios, FFT computation cannot be fully paralleled
because of resources constraints. However, in CNN compu-
tation, the filter size is relatively small and the feature map
size also decreases as the networks go deeper. Therefore, it is
reasonable to apply a small-scale FFT algorithm.

Based on (10) and (11), we specialize the PE for FFT-
based convolution. In the transformation stage, to perform
2-D-FFT, we first conduct 1-D-FFT for each row of the
input tile, then the intermediate matrix is transposed, prepar-
ing for next row-wise 1-D-FFT. Then another transposition
is required to obtain the right permutation of the FFT result.
Note that the multiplications in stages 1 and 3 are also con-
stant multiplications, therefore it does not cost any DSPs.
In stage 2, we apply the technique in (12) to conduct the
complex multiplication. Moreover, we leverage Hermitian
symmetry of both input and filter to reduce the number of
multiplications and memory requirement, as shown in Fig. 5.
Similar to Winograd PE, intermediate matrices are stored in
registers and constant multiplications are replaced by shift
operations.

C. PE Parallelization and Local Memory Promotion

To initiate an array of PEs, we can parallelize the row
and column of the input feature maps, and the input and
output channels. This corresponds to parallelizing/unrolling
the four loops (L1–L4) surrounding the fast algorithm engine
in Listing 1. We choose not to parallelize the L1 as it will
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Fig. 6. PE parallelization design with Pm = 4 and Pn = 2.

TABLE IV
MEMORY PARTITION FACTORS

significantly increase the size of line buffers. Different par-
allelization strategies of the other three loops can lead to
different data sharing and throughput. Similar to [13], we do
not choose to parallelize the L1 and L2 loops as the par-
allelization can lead to serious memory bank conflicts. We
define the unroll factors of L4 and L3 are Pm and Pn, respec-
tively. Therefore, there are a total of Pm × Pn fast algorithm
PEs in parallel. We implement the parallelization through loop
unrolling as shown in Fig. 4(a). Loops that are fully unrolled
are set be the innermost loops. Fig. 6 shows the implemen-
tation of parallelization. The input tiles are transformed first
then broadcasted to Pm × Pn PE array, which can reduce the
resource consumption.

Together with loop unrolling, we also partition the input,
output and filter buffers to sustain efficient memory band-
width. Clearly, for Winograd, we implement 4-D filters which
include dimension row, column, input, and output channels.
For FFT-based implementation, we store the filters in multiple
buffers resulting from the irregularity after Hermitian sym-
metry. Each buffer is 3-D which includes dimension column,
input, and output channels. In addition, we store the real part
and the imaginary part separately. Like Winograd implementa-
tion, the row and column dimension are partitioned completely.
Therefore, there are 2 × n × (�(n/2)� + 1) ≈ n2 buffers for
the filters. We implement 2-D input and output buffers and
partition each dimension. Table IV gives the partition factors
for various buffers.

In parallel computation, we interchange the order of loops as
shown in Fig. 4(b) to avoid data duplication. Note that Pm×Pn
PEs only require Pm times of input transformation, therefore
we set Pm as the outmost loop in computation. Similarly, the
inverse transformation only needs to be performed Pn times.
So we do not perform inverse transformation immediately. The
results of EWMM operation are accumulated across all input
channels, after that, the accumulated results are transformed
to the spatial domain.

D. Implementation of Other Layers

In addition to convolution layers, there are also other layers
in CNNs, such as fully connected (FC) layers, pooling, and

(a) (b)

Fig. 7. FC layer implementation. (a) FC layer. (b) Implement FC as EWMM.

rectified linear unit (ReLU) layers. Here, we describe how to
implement these layers.

FC layers connect all the neurons in the previous layer to
every single neuron in the weight matrix as shown in Fig. 7(a).
The computation is a matrix-vector product. The operations
in FC layers can be treated as EWMM by filling the input
neurons and its corresponding weights into a matrix. The
weights in FC layers are significantly larger than the input neu-
rons. Therefore, we load the entire input neurons of FC layer
into on-chip memory but stream the weights using the FIFO
interface. In addition, the FC computation contains no data
reuse opportunities. To improve memory bandwidth, an effec-
tive approach is to increase the batch size Nbatch (the number
of input images). Specifically, we assemble a batch of images
from the previous layer, these images are processed together.

Max pooling layers are widely used in CNNs, which out-
put the maximum values in subregions of input feature maps.
ReLU layers set any input value less than zero to zero. ReLU
and pooling are implemented by introducing comparison
operators to the output buffers.

VI. RESOURCE AND PERFORMANCE MODEL

Our fast algorithm implementations involve several design
parameters: input tile size (n) and parallelization degrees (Pm
and Pn). Given an input tile size n, since the filter size is fixed
for a convolutional layer (e.g., 3 × 3 and 5 × 5), the output
tile size m can be determined (m = n − r + 1). These design
parameters affect both performance and accuracy. Hence, we
develop an analytical model that can predict the performance
of Winograd and FFT algorithm on FPGAs. Then, we employ
it to explore the design space.

As mentioned in Section II-B, the multiplication saving
increases as the input tile size n increases. However, the
range of the constants in the transformation matrices will also
increase as n increases, leading to precision loss. In this paper,
we use fixed-point 16 bits to represent both data and filter. We
set the precision to 2−15 for filters to maintain a high accuracy
as prior work [3]. Under this precision constraint, we set the
maximum value for n as 8 in the Winograd algorithm so that
we can precisely represent the constants in the transformation
matrix. For FFT algorithm, n is restricted to 4 and 8.

In the following, we model the resource consumption and
predict the performance for different input tile size n and
parallelization degree Pm and Pn.

1) Modeling Resource Usage: As mentioned in
Section II-B3, only the EWMM operations consume DSP
resource. Therefore, the number of DSPs can be formulated
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as follows:

DSP =
{

n2 × Pn × Pm if Winograd
3n

(⌊ n
2

⌋ + 1
) × Pn × Pm if FFT.

Modeling LUT resource is more complex. According to
Fig. 6, we approximate its consumption using linear regression
models

LUT = αr
n × Pm + βr

n × Pn (14)

where αr
n is the LUT consumption for the transformation of

a n × n input tile in Winograd PE or FFT PE with the fil-
ter size r. Note that the results of the EWMM operation
are first accumulated then inversely transformed. Therefore,
there are nine inverse transformations in total. Here, βr

n is the
LUT consumption for the inverse transformation of a n × n
intermediate tile.

αr
n and βr

n can be obtained on different platforms in advance.
In our design, αr

n and βr
n is obtained from Vivado HLS tool.

The BRAM usage is composed of the banks for filter,
input, and output buffers. The bank number is decided by the
memory partition factors in Table IV

Banks =

⎧
⎪⎪⎨

⎪⎪⎩

r2PmPn + (n + m)nPm + 2m2Pn
if Winograd

n2PmPn + (n + m)nPm + 2m2Pn
if FFT.

2) Modeling Performance: For both algorithms, their
performance is bounded by either computation or data transfer.
To efficiently utilize the resource, the data transfer speed must
be greater than or equal to the computation speed. According
to Fig. 4, we model the time to process n rows of input data
in the line buffers as follows:

Tcompute =
(⌈

C

m

⌉
×

⌈
Tm

Pm

⌉
×

⌈
Tn

Pn

⌉
× II + Pdepth

)
× 1

Freq
(15)

where Freq is the operating frequency of the FPGAs. II denotes
the iteration interval of the pipeline. In our implementation,
loops in Fig. 1(b) are perfectly pipelined, so the II = 1. Pdepth
is the pipeline depth, which can be ignored when the loop trip
count is large enough.

On the other hand, the transfer time for the corresponding
input and output data is as follows:

Ttransfer = m × W × max(Tn, Tm) × 16

Bandwidth
. (16)

Since we require that Ttransfer ≤ Tcompute, bandwidth
requirement can be formulated as follows:

Bandwidth ≥ m2 ×
⌈

Pm × Pn

min(Tn, Tm)

⌉
× 16 × Freq. (17)

In addition, we also consider the time Tinit to load the first
n rows of the input image into on-chip memory and filters as
follows:

Tinit = Tm × Tn × r × r + n × W × Tm

Bandwidth/16
. (18)

Putting it all together, the total operations and processing
time of the convolution are

OPs = H × W × M × N × r2 × 2 (19)

Fig. 8. Automatic tool chain.

Ttotal =
⌈

M

Tm

⌉
×

⌈
N

Tn

⌉
×

(⌈
H

m

⌉
× Tcompute + Tinit

)
. (20)

Accordingly, the effective performance of convolution based
on fast algorithm is as follows:

Perfeff = OPs

Ttotal
. (21)

Now, given a convolutional layer represented by
{H, W, M, R, C, N, r} and tiling factors {Tn, Tm} deter-
mined by the size of on-chip memory, our goal is to
find the optimal solution {n, Pm, Pn} which maximizes the
performance (21) with resources and bandwidth constraints.
To solve this problem, we rely on our performance models to
explore the design space and identify the optimal solution.

VII. AUTOMATIC TOOL CHAIN

We propose an automatic tool chain that maps CNN model
to FPGA implementation. The observation that OaS method
is suitable for both Winograd algorithm and FFT algorithms
motivates a uniform data locality-aware architecture design.
Clearly, both Winograd PE and FFT PE fetch data from
line buffer and generate output tile by tile. So shifting one
algorithm to another only requires reconfiguration of the PE
without any other change to the architecture. To optimize our
design, we formulate the performance and resource utiliza-
tion with design parameters. Then we rely on this model to
guide our design space exploration. With a given fast algo-
rithm (Winograd or FFT) our automatic tool can map CNNs
onto FPGAs automatically as shown in Fig. 8. The flow con-
sists of four steps. In step 1, CNN architecture and FPGA
configuration are fed into the design space exploration engine
(DSEE) to get the optimal solution. In step 2, based on the
optimal solution, we develop a code generate engine (CGE)
which can generate fast convolution functions automatically.
In step 3, we use the Xilinx HLS tool to synthesize the code
into register transfer level. Finally, we use the Xilinx SDSoC
(software-defined system-on-chip) tool-chain to generate the
bitstream.

A. Design Space Exploration Engine

First, given a certain fast algorithm, a CNN model and
FPGA configuration are fed into DSEE. The CNN model can
be described like Caffe prototxt [42]. The FPGA configuration
parameters include the memory bandwidth, number of DSPs,
logic cells, and on-chip memory capacity. Then, the DSEE
will output the optimal solution based on our resource and
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(a) (b) (c) (d)

Fig. 9. Resource utilization and performance results in Winograd for 3 × 3 filter. (a) Pn = 2, Pm = 2. (b) Pn = 2, Pm = 4. (c) Pn = 4, Pm = 2.
(d) Pn = 4, Pm = 4.

(a) (b) (c) (d)

Fig. 10. Resource utilization and performance results in Winograd for 5 × 5 filter. (a) Pn = 2, Pm = 2. (b) Pn = 2, Pm = 4. (c) Pn = 4, Pm = 2.
(d) Pn = 4, Pm = 4.

performance model in Section VI. The solution includes the
workload of a single PE n and the number of PEs Pn and Pm.

B. Code Generate Engine

Based on the optimal solution, CGE can generate the fast
convolution functions using C++ template. First, the algo-
rithm parameters (the tile size in fast algorithms) determine
the memory-aware functions. Then, according to the certain
algorithm and parameters, CGE will generate corresponding
PE functions. These functions describe the whole accelera-
tor architecture, including line buffers, buffer management,
and PE configurations. Precisely, the generated implementa-
tion is HLS compatible C++ code. Pragmas, which are used
to describe hardware structure, are inserted into the functions.
For example, optimal parallelism parameters Pn and Pm from
DSEE set the loop unrolling factors and memory partition
factors.

VIII. EXPERIMENTAL EVALUATION

A. Experiments Setup

We evaluate our techniques on two FPGA platforms:
1) Xilinx ZC706 and 2) ZCU102. Xilinx ZC706 platform
consists of a Kintex-7 FPGA and dual ARM Cortex-A9 pro-
cessors. The external memory is 1-GB DDR3. Our FPGA
implementation is operated at 166-MHz frequency on this plat-
form. Xilinx ZCU102 consists of an UltraScale FPGA, quad
ARM Cortex-A53 processors, 500-MB DDR3. Our FPGA
implementations are operated at 200-MHz frequency on this
platform. To measure the runtime power, we plugged a power
meter in the FPGA platform.

In the following, we first present the model and resource
analysis results for a typical convolution layer (Sections VIII-B
and VIII-C). Then, we perform case studies using the state-of-
the-art CNNs, including AlexNet, VGG16, Resnet, and YOLO
(Section VIII-E). It should be noted that the performance we
report in the following is the effective performance. It is com-
puted by dividing the total operations by the total processing
time (21). For the spatial algorithm, the effective performance
is always bounded by MaxF, the maximum computational
capability of the FPGA platform. MaxF = DSP × Freq × 2,
where 2 means multiply and add operations. However, for

the fast algorithm, the effective performance can exceed the
MaxF as fast algorithm can increase the effective DSP effi-
ciency by reducing the number of multiplications required by
convolution.

B. Winograd Model and Performance Analysis

In this section, we evaluate our analytical models and ana-
lyze the resource usage of Winograd algorithm using a single
convolutional layer. We use a typical input feature map size:
224(H) × 224(W) with {M = N = Tn = Tm = 64} and try
two different filter sizes: 3×3 and 5×5. Figs. 9 and 10 com-
pare the predicted and actual performance for different input
tile size and parallelization degree, and give the correspond-
ing resource utilization. The experiments are performed on
Xilinx ZC706. We can see that our performance prediction is
very accurate. On average, the prediction error is 15.4% and
13.7% for filters 3 × 3 and 5 × 5, respectively. The sources of
the inaccuracy may come from the discrepancy of actual and
peak bandwidth and DDR access latency.

Thanks to the Winograd algorithm, DSP is no longer the
limiting resource for most cases as shown by Figs. 9 and 10.
Instead, BRAMs and memory bandwidth can be the limit-
ing resources. The BRAMs consumption comes from a few
aspects. First, unlike the spatial convolution, Winograd con-
volution requires more buffers because of the line buffer struc-
ture. Second, paralleling Winograd PEs requires memory par-
tition to sustain the on-chip memory bandwidth. Finally, when
the computation efficiency improves, the off-chip bandwidth
might become the bottleneck. Overall, the Winograd algorithm
saves the DSPs and improves the overall resource utilization.

C. FFT Model and Performance Analysis

Fig. 11 shows the experimental results of the FFT model. As
aforementioned, in the FFT algorithm, the FFT size is equal to
the input tile size and the filters are padded to the same size as
the input tile. In this section, we only evaluate FFT with two
sizes (n = 4 and n = 8) in a single convolutional layer just.
Because when FFT size is larger than 8, the on-chip memory
is not large enough to store all buffers in our framework.
On average, the prediction error of our performance model
is 10.1%.
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(a) (b)

Fig. 11. Resource utilization and performance results in FFT. (a) FFT size = 4. (b) FFT size = 8.

TABLE V
PARAMETERS IN RESOURCE MODEL

In Fig. 11, we can see that DSP becomes the abun-
dant resources because of the improvement of computa-
tion efficiency. Compared to Winograd-based implementation,
FFT-based implementation requires more BRAMs, since the
filters are complex numbers which have transformed offline.
Moreover, the FFT algorithm consumes more logic resources
(LUT). Precisely, there are more additions and constant
multiplications in the FFT algorithm comparing the Winograd
algorithm. Note that 2-D-FFT transformation takes 2n times
more operations than 1-D-FFT transformation. However, in
Winograd (6) and (7), the transformation of the input tile only
requires two constant matrix multiplications.

D. Resource Validation

In previous FPGA implementation which applied the spatial
algorithm, the performance is usually bounded by the num-
ber DSPs. However, when applying fast algorithms which can
result in less DSP utilization, the other resources like LUT
and BRAM should be taken into account. In this section,
we evaluate our resource model in Section VI. Table V lists
the parameters αr

n and βr
n in (14) which comes from Xilinx

Vivado HLS tool to guide our resource exploration. For the
FFT algorithm, the filters are padded to the same size as the
input tile and transformed offline, parameters for the filter
with r = 5 are not necessary. For both algorithms, αr

n and
βr

n increase dramatically with n, because the matrix size and
constants increase exponentially. For FFT algorithm, αr

n and
βr

n are approximately equal, because FFT and IFFT share the
same arithmetic complexity.

Figs. 9–11 show the resource utilization obtained from the
Xilinx Vivado tool. It shows that our resource model can accu-
rately predict resource utilization. Table VI shows the real
resource utilization and predicted utilization for four cases in
Figs. 9–11. It is reasonable that the real resource utilization is
slightly higher than the predicted. The extra BRAMs are used
for FIFO logic and buffers in padding process. And a small
part of LUT is used for multiplexer and FIFO logic. Besides
the multiplications in EWMM stage, the calculation for the

TABLE VI
RESOURCE UTILIZATION OF WINOGRAD AND FFT

TABLE VII
DESIGN PARAMETERS

boundary condition and array index also need DSPs to perform
multiplications. Besides, we find that the real LUT utilization
is higher than the predicted utilization in the FFT algo-
rithm. This is because the transposition operation in 2-D-FFT
algorithm needs the logic resource to rearrange the data layout.

E. Case Study

Here, we evaluate our Winograd implementation using
AlexNet, VGGNet, and Resnet. FFT is tested on VGGNet
and YOLO. Table VII gives the parameters for each network
in our implementation. For ZC706 platform, we choose tiling
parameter as Tm = Tn = 64 and for ZCU102 platform,
Tm = Tn = 128.

1) AlexNet: AlexNet consists of five convolution and three
FC layers [10]. The input image is 224 × 224. All the con-
volution layers use small filters (5 × 5 and 3 × 3) except the
first convolution layer (11×11). For the first layer, We choose
to use the spatial convolution algorithm for implementation.
For the rest layers, we use a uniform 3×3 filter for Winograd
algorithm. For the 5×5 filter, we implement it using four 3×3
filters with zero padding. Due to the layer diversity of AlexNet,
we set (2/3) on-chip resource as our constraints in the design
spaces exploration and the rest resources are implemented for
the spatial convolution algorithm.
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TABLE VIII
PERFORMANCE COMPARISON FOR ALEXNET

Table VIII gives the results. Zhang et al. [13] only given
the convolution implementation without FC layers. Compared
to prior work [13], we improve the average convolution
performance from 61.6 to 1006.4 GOP/s.1 For the overall
CNN, we improve the performance from 72.4 to 854.6 GOP/s
compared to [2]. Our performance is less than [43], this mainly
comes from three reasons.

1) The irregular structure of AlexNet. The stride of the first
layer is 4, which makes the first layer inefficient if using
Winograd.

2) The frequency in [43] is much higher.
3) The DSP in Arria 10 can be implemented as two FP16

multipliers.
However, for AlexNet, our implementation shows a better
energy-efficiency. When implementing a more regular CNN
model (like VGGNet), our design shows a better performance
result.

2) VGGNet: VGG16 [34] consists of five convolution
groups with different input size (224, 112, 56, 28, and 14).
In VGG16, all convolutional layers are with 3 × 3 filters,
which fit well for Winograd algorithm. Therefore, we set 95%
on-chip resource as our constraints in the design spaces explo-
ration. Table IX compares our techniques with prior works. For
the convolutional layers, we improve the average performance
from 1283 to 2601.4 GOP/s compared to [2], [3], and [7]. For
the overall CNN, we improve the performance from 866 (1790
if fixed point) [7] to 2479.6 GOP/s. Zhang and Li [7] did not
apply fast algorithm but showed a comparable performance
with ours. Because the frequency in [7] is much higher than
ours and the different configuration of DSPs between Intel
FPGA and Xilinx FPGA. To make a fair comparison across
different platforms, we also present the total resource effi-
ciency and energy efficiency on each platform. We can observe
that our implementation achieves better resource efficiency,

1In [13], FC layer is not implemented. So the efficiency value of [13] is
calculated based on the average performance of convolution.

TABLE IX
PERFORMANCE COMPARISON FOR VGG

which comes from the reduction of arithmetic complexity and
novel architecture.

We notice that we achieve higher performance for VGG16
than AlexNet. This is because VGG16 uses uniform convolu-
tion structure, while AlexNet uses two different convolution
structures. We also find that the performance of convolutional
layer decreases as the network goes deeper. This is due to the
fact that the initial time (Tinit) accounts for more total time
(Ttotal) and the initial time only involves data transfer without
actual computation.

We also apply the FFT fast algorithm to accelerate VGGNet
on the ZC706 platform and compare it with [44] which
also apply FFT algorithm. Zhang and Prasanna [44] did not
implement FC layer, so the resource and energy efficiency is
computed according to the convolution result. We improve the
performance from 123.5 to 277.8 GOP/s and energy-efficiency
from 9.3 to 29.4.

3) YOLO: You only look once (YOLO) is a state-of-the-
art network for real-time object detection system [35]. We use
Tiny-YOLO version to evaluate our design. Tiny-YOLO con-
sists of nine convolutional layers and six max pooling layers.
All convolutional layers use 3 × 3 filters. We apply the FFT
algorithm to accelerate YOLO network, the results are shown
in Table X. The detailed performance of each layer is shown
in Fig. 12. We notice that the performance increases in the
first few layers. This is because the number of channels in the
first few layers is relatively small which means less data reuse
opportunities, so the performance of these layers is bounded
by the off-chip bandwidth.

4) Resnet: Resnet is a modern network for image recogni-
tion which consists of many residual blocks [11]. A residual
block is composed of two 1 × 1 convolutional layers and one
3 × 3 convolutional layer. We set (2/3) on-chip resource as

2In Xilinx ZC706 (Kintex-7) Platform, a single DSP(DSP48E1) slice can be
implemented as one 18×25 fixed-point multiplier. In Altera GSD8 (Stratix-V)
Platform, a single DSP slice can be implemented as two 18 × 18 fixed-point
multipliers.
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TABLE X
PERFORMANCE COMPARISON FOR RESNET AND YOLO

Fig. 12. Performance of each layer in YOLO.

our constraints for the fast algorithm. We apply the Winograd
algorithm to accelerate the 3 × 3 convolutional layer and the
spatial convolution algorithm for 1 × 1 convolutional layer.
Table X gives the results. Our performance is 163.1 GOP/s
for the convolutional layers and 130.4 GOP/s for the whole
network. Our performance is less than [45] and [46], this
mainly comes from two aspects.

1) A single DSP can be implemented as two 16×16 fixed-
point multipliers in Intel Altera platform.

2) Part to on-chip resources is used for 1 × 1 filters and
these filters account for 40% computation in a residual
block.

For Resnet, our implementation shows a better energy-
efficiency compared with [45].

F. Comparison With GPU

In this section, we conduct a comparison between GPU and
FPGA platforms. For GPUs, we measure the performance of
VGG16 using Caffe framework [42] on NVIDIA TitanX plat-
form. To make a fair comparison, we test the performance of
TitanX with the latest cuDNN [47] as Winograd and FFT algo-
rithm is also included in cuDNN Power on GPU is obtained
using NVIDIA profiling tools. Table XI shows the com-
parison results. In cuDNN, Winograd algorithm outperforms
FFT algorithm, because A significant memory workspace is
needed to store intermediate results in FFT algorithm which
takes more time than Winograd. As shown, TitanX gives bet-
ter performance, but our implementation on Xilinx ZCU102
FPGA achieves much better (2.5X) energy efficiency.

TABLE XI
COMPARISON WITH GPU PLATFORM

IX. RELATED WORK

A. Architecture for CNNs Using Spatial Convolution

Recently, FPGAs are gaining popularity for use as accel-
erators for deep learning tasks due to its high performance,
low power and reconfigurability. Most FPGA accelerators
focus on the implementations of convolutional layers using
the spatial algorithms [1], [2], [5]–[7], [12], [13], [45].
In [2], 3-D convolution operations is flattened as 2-D GEMM,
which is widely adopted on GPU platforms. But on FPGAs,
it can result in massive memory usage. Song et al. [18]
proposed a general purpose accelerator using the kernel-
partition method. Ma et al. [6] made an in-depth analysis
of loop optimization techniques in spatial convolution, which
includes loop tiling, loop unrolling, and loop interchange.
Zhang and Li [7] focused on reducing the on-chip memory
bandwidth requirement. Wang et al. [48] proposed to employ a
structured compression technique using block-circulant matri-
ces to compress the LSTM model small enough to be fitted
on BRAMs of FPGA. Zeng et al. [49] presented a framework
for generating Verilog of high throughput CNN accelera-
tors. Zeng et al. [49] proposed a novel concatenate-and-pad
technique, which improves OaA significantly by reducing the
wasted computation on the padded pixels. Wei et al. [50]
implemented CNN on an FPGA using a systolic array archi-
tecture, which can achieve high clock frequency under high
resource utilization. Wei et al. [31] proposed tile-grained
pipeline architecture for low latency CNN inference, which
supports pipelining execution of multiple tiles within a sin-
gle input image on multiple heterogeneous accelerators.
Lin et al. [51] proposed layer clusters paralleling mapping
method to classify the layers into clusters based on their
differences of parameters and data localities, and different
clusters will be accelerated using different partitions of FPGA.
Zhang et al. [52] proposed an AccDNN tool which included
high-quality RTL network layer IPs, a fine-grained layer-
based pipeline architecture, and an automatic design space
exploration tool.

B. Architecture for CNNs Using Fast Algorithms

A few studies also focus on reducing the arithmetic
complexity of convolution [14], [19], [43], [44] using non-
conventional algorithms. Zhang et al. [14] reduced the
computation using low-rank approximation which is based
on minimizing the reconstruction error of nonlinear response.
Lavin and Gray [19] evaluated the FFT and Winograd
algorithms on GPU platforms. In general, FFT shows less
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efficiency for convolutions with small filters. Zhang and
Prasanna [44] implemented FFT with the size of 8 on FPGA
platform for CNN. But it shows a little reduction of compu-
tation complexity for two reasons. First, the multiplications
in FFT is constant multiplications which do not have to be
implemented by DSPs. Second, Zhang and Prasanna [44]
did not take advantage of Hermitian symmetry which can
reduce the DSP consumption by half. Ko et al. [53] proposed
an FFT-based architecture for CNN model, which can be
used for training and inference process. In the design
in [53], Hermitian symmetry and three-DSP-multiplications
were applied. Aydonat et al. [43] applied the Winograd algo-
rithm on the Arria 10 FPGA platform. But they only use 1-D
Winograd to reduce arithmetic complexity in which the multi-
plication saving rate is only (n/mr). Shen et al. [54] proposed
a uniform template-based architecture based on the Winograd
algorithm. Shen et al. [54] extended the Winograd algorithm to
3-D for 3-D CNN models. Podili et al. [55] also implemented
the Winograd algorithm and proposed a novel data layout to
reduce the required memory bandwidth by half. To achieve
generality and higher resource utilization, Xiao et al. [28]
explored heterogeneous algorithms to maximize the through-
put of a CNN based on a fusion architecture. The work in [29]
is called SpWA accelerator which exploits sparsity in CNN
models. Lu and Liang [29] rearranged the data access in the
convolutional layer and transformed 2-D-Winograd algorithm
to several vector-matrix multiplications.

In this paper, we deeply evaluate 2-D Winograd algorithm
and FFT on FPGA platforms. We propose a uniform frame-
work which uses a line-buffer structure to enable data reuses
and performance models to guide design space exploration.

X. CONCLUSION

FPGAs have been widely used to accelerate CNN-based
applications. However, prior implementations based on the
spatial algorithms are mainly limited by the computational
capability of FPGAs. In this paper, we propose a framework
on FPGAs based on the fast algorithm, which can effectively
reduce the number of multiplications in the convolutional
layer. We design an efficient PE engine for both the Winograd
algorithm and FFT algorithm. To guide a fast design space
exploration, we also develop analytical models to estimate
resource usage and performance. Our implementations can
reach the peak performance 2479.6 GOP/s on ZCU102 FPGA
platform, which outperforms all previous work.
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