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Abstract. In the imaging process for nanometer-scale electron tomog-
raphy, misalignment between the actual projection parameters and the
theoretical ones is inevitable due to mechanical precision of the instru-
ment. Effective alignment remains a challenge. Currently, marker-based
alignment approaches complicate the sample preparation process and
worsen the sample shrinking issue. Marker-free approaches suffer from
either low accuracy or long computation time.

In this paper, we formulate an analytical problem for marker-free
alignment by minimizing the reprojection error. The reprojection error
involves the projection operator, which is a complicated functional with
the projection parameters as the variables. To solve this optimization
problem, we derive a gradient-based approach by decomposing the orig-
inal problem with auxiliary parameters and by linearizing a subproblem
with Taylor expansion. The approach is computational friendly, espe-
cially when comparing to an exhaustively parameter tuning approach in
previous practice. The results show that our method is capable of accu-
rate alignment without fiducial markers and obtains a 16.7× speedup
over the existing exhaustive approach, which makes fine reconstruction
of ROI almost instantly ready after data collection. A preliminary FPGA
design for the method’s bottleneck process shows 6.6× speed-up over
well-optimized GPU program.

Keywords: Electron tomography · Automatic alignment · Functional
optimization

1 Introduction

Electron tomography (ET), a technique combining transmission electron
microscopy (TEM) and computed tomography, is now widely used for acquiring
high-resolution 3D structures of biological samples. To obtain the 3D structures,
it is critical to reconstruct the region of interest (ROI) from projection images
provided by the TEM microscope. These projection images are usually collected
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according to specific regulations called tilt geometries. A tilt geometry decides
the position and attitude of a series of projection images (tilt series) for ET
reconstruction.

We perform ET reconstruction given the theoretical tilt geometry and the
tilt series. However, due to high magnification and low mechanical accuracy,
unexpected drift and rotation of ROI happen during the image collection process.
Therefore, alignment is needed for high-quality reconstruction results.

There are mainly two types of alignment methods, marker-based alignment
and marker-free alignment. Fiducial marker-based alignment approaches [8,10]
use high-contrast markers, such as gold beads, embedded in a sample to deter-
mine the position and attitude of the tilt series. However, this type of method is
not always available, since it is difficult or impossible to embed enough fiducial
markers in the ROI sometimes. Besides, the selection of marker detection algo-
rithms is data-dependent [11], which also limits the usability of the marker-based
approaches.

Marker-free alignment approaches require no embedded fiducial markers. And
these methods can be further categorized into cross-correlation and feature-based
methods. Guckenberger [2] brought up cross-correlation alignment method which
determines the common origin of tilt series by comparing the cross-correlation
coefficient. But this method is bothered by errors accumulating along with align-
ment going on. For this problem, Winkler and Taylor [13] proposed a method
combining cross-correlation and reconstruction-reprojection to compensate accu-
mulated errors, which is still widely used. This method will be mention below as
naive exhaustive search (NES) method On the other hand, feature-based meth-
ods make use of image features as markers to do the alignment. Feature-based
methods is often less time-consuming [3] but need specific detectors for different
kind of datasets [11], which damages its universality.

To overcome these problems, the method presented in this paper is devel-
oped for reconstructing specimens without fiducial markers and apparent local
features. Inspired by Houben and Sadan [5], method is mainly composed of a
coarse alignment process by cross-correlation and a refinement process based
on minimization of reprojection error. The former coarse alignment is used to
provide the latter process with an initial value. The following refinement process
further improves the alignment accuracy. With both procedures, we grantee the
algorithm with both efficiency and accuracy. Compared with other methods, our
method does not depend on fiducial markers or image features. Through recon-
struction and reprojection process, both projection space and real space infor-
mation are made full use of, which makes our method free from accumulated cor-
relation errors that happen in the cross-correlation method. Compared with the
iterative reconstruction-reprojection method brought up by Winkler and Tay-
lor [13], as experimental results show, less iteration number needed and fewer
operations within one iteration make our method much efficient. The experiment
on a conical-tilt dataset shows our method’s comparable accuracy and 16.7× effi-
ciency compared with similar marker-free method. For the method’s bottleneck
process, a preliminary FPGA design shows 6.6× speed-up over a well-optimized
GPU program.
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2 Automatic Alignment Problem

We reconstruct the 3-D image of a specimen from a collection of 2-D TEM images
(projections) using electron tomography. The process is determined by a set of
parameters in θ. For a fixed tilt angle, we collect N projections of the specimen
at configuration θ = (θ1, θ2, · · · , θN ). The i-th projection is determined by a
5-tuple θi = (αi, βi, γi, xi, yi), where the ROI center of the specimen is projected
at coordinate (xi, yi), and αi, βi and γi are the yaw, pitch, and roll angles of the
specimen, respectively.

Ideally, the 5-tuple of each projection is known at prior. Using an automatic,
a semi-automatic, or a manual controller, we take TEM images at certain angles
by rotating the specimen along its normal with a fixed tilt. The specimen’s ideal
posture at certain configuration is as shown in Fig. 1.

Fig. 1. (a) Original specimen. (b) Tilt specimen with a fixed pitch. (c) A series of tilt
specimen with various roll angles.

At each angle, we obtain the corresponding yaw, pitch, and roll angles, and
we shift, align, and refocus the ROI center before taking a TEM image.

However, due to the intrinsic random and system errors of the instrument
(e.g., the controller, the motor, and the tray), the actual configuration θ∗
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Assuming f∗ is the unobservable 3-D image, the TEM imaging process can
be described using the projection operator R(θ∗) = (R(θ∗

1),R(θ∗
2), · · · ,R(θ∗

N )).
And the projection data g = R(θ∗)f∗ = (g1, g2, · · · , gN ) consists of a set of 2-D
TEM images, the i-th of which is gi = R(θ∗

i ).
If we use the mistakenly-believed ideal configuration θ̃ to reconstruct the

3-D image by solving for argminf ||R(θ̃)f − g||2, it will always generate inaccu-
rate results, since R(θ̃)f∗ �= g = R(θ∗)f∗. Therefore, we propose the automatic
correction problem to recover the actual configuration θ∗ for a high-quality elec-
tron tomography, so that we can avoid the quality degradation due to using
the mistakenly-believed ideal configuration θ̃ during image reconstruction. For
convenience consideration, we mark argminf ||R(θ̃)f − g||2 with S(θ, g).

We formulate automatic correction as a functional optimization problem,

min
θ

‖R(θ)f(θ) − g‖2

where f(θ) = argmin
f

‖R(θ)f − g‖2 .
(1)
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The parameterized operator (functional) R(θ) models how the projection data
g is acquired, and the image f(θ) is reconstructed at the guess of projection
configuration θ.

Apparently, the actual configuration θ∗ is an exact solution to this prob-
lem, such that ||R(θ∗)f(θ∗) − g|| = ||R(θ∗)f∗ − g|| = 0. By solving the auto-
matic correction problem to recover an estimate of the actual configuration θ̂,
we expect to “correct” the mistakenly-believed ideal θ̃, so that ||R(θ̂)f(θ̂)−g|| <

||R(θ̃)f(θ̃) − g||, if not ||R(θ̂)f(θ̂) − g|| = 0.

3 Automatic Alignment Methods

3.1 Naive Exhaustive Search

The basic idea of naive exhaustive search is to examine the neighborhood of
known parameters in the solution space and find the best solution in this neigh-
borhood by comparing the values of the objective function. Taking a projection
series with 72 projections and each projection with 5 configuration parameters
for example, the solution space dimension is 72 × 5 = 360. A search in 360-
dimension space requires objective function S and R calculated large amount of
times.

3.2 Analytical Optimization

The key of our method is the optimize of Eq. (1) using gradient descent method.
This process involves computing the gradients ∇θR(θ) and ∇θf(θ). The latter
one is relatively difficult to write down the analytical form. To use the gradient
descent method, we reformulate Eq. (1) into the following problem by introducing
the auxilary varaible θ̄,

min
θ,θ̄

∥
∥R(θ)f(θ̄) − g

∥
∥
2 s.t.θ̄ = θ

where f(θ̄) = argminf

∥
∥R(θ̄)f − g

∥
∥
2
.

(2)

And we apply a hybrid approach of block descent and gradient projection to
solve this reformulated problem. And our algorithm is outlined as below,

Step 0. Start from k = 0 with initial guess θ(0) = θ̄(0) = θ̃;
Step 1. Solve f (k) = argminf ||R(θ̄(k))f − g||2;
Step 2. Solve θ(k+1) = argminθ ||R(θ)f (k) − g||2;
Step 3. Update θ̄(k+1) = θ(k+1);
Step 4. If not converged, Set k = k + 1 and Goto Step 1.

The subproblem in Step 1 is the conventional image reconstruction problem
for electron tomography. Weighted back-projection is one of the feasible methods.

We solve the subproblem in Step 2 using linearization. It is natural
to start with the initial solution θ(k). We then perform a Taylor expan-
sion at θ(k) and derive R(θ(k) + Δθ)f (k) = (Rf (k))(θ(k) + Δθ) ≈ (Rf (k))
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(θ(k)) + ∇θ(Rf (k))(θ(k))Δθ. After solving Δθ(k) = argminΔθ ||(Rf (k))(θ(k)) +
∇θ(Rf (k))(θ(k))Δθ − g||2 by least squares, we update θ(k+1) = θ(k) + Δθ(k).

According to the definition of operator R, integration form of ∇θ(Rf (k))
(θ(k)) can be expressed by

∇θ(Rf (k))(θ(k)) = ∇θ(
∫

L
θ(k)

f(r)d|r|), (3)

where Lθ(k) is the integration path determined by projection configuration θ(k).
We call each path of integration a ray.

With all ∇θ(Rf (k))(θ(k)) calculated and the precondition that the minimum
of Eq. (2) is 0, the minimization turns out solving Δθ in a linear equation set
||(∇θ(Rf (k))(θ(k))f) · Δθ|| = 0. Each equation in this set corresponds to a dif-
ferent θ. Noticing the fact that the electron microscope collects all g data with
same angular parameters simultaneously, data points with same (θα, θβ , θγ) share
the same Δθ. With the reduction of variables, the equation set is now over-
determined and its least-squares solution is what we are looking for. For every
iteration, the reconstruction and corresponding Taylor expansions are recalcu-
lated to make sure the error caused by Δθ is always much more significant than
error from minimization.

3.3 Time Complexity and Hardware-Based Improvements

According to the algorithm outline, the basic calculation unit of optimization is
the solving of operator R, ∇θR, and S. Compared with naive exhaustive search
(NES) method, our method significantly decreases the amount of calculation.
The NES method goes through the solution space to find the best configuration
match. To eliminate influence by other configuration parameters, each param-
eter must be searched separately and one R and one S operator is carried out
during every single trial. Instead, for the sake of gradient descent, our method
accomplishes correcting for all configuration parameters in one descent made up
with one R calculation, one ∇θ(R) calculation, and one S. In addition, in order
to reduce further, we find that during one descent process, the data usage and
calculation structure in calculations of R and ∇θ(R) have much in common. We
also find that during one calculation, one data point in f is used only 1–5 times
for multiplication before it’s discarded. All these features inspire us to an idea
of heterogeneous computing and data reuse. So we firstly input data f and cur-
rent configuration into an OpenCL kernel. Rf and ∇θ(R)f are then calculated
simultaneously to make full use of GPU bandwidth. The rough estimation of
theoretical calculation amount is shown in Table 1. In this table, Np represents
the value number of trial for one configuration parameter. Namely, when 3 val-
ues in both sides of a given value with fixed interval are tried, Np is 7. The 4th
column in Table 1 shows a specific comparison among methods when Np = 7
and the cost of R and S considered to be comparable.

For the reprojection Rf process, which is the most expensive, we make use
of Vivado High Level Synthesis (HLS) for acceleration. This tool enables acceler-
ating Clang-base design and exporting RTL as a Vivado’s IP core. To adapt for
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Fig. 2. (a) Ray-based: ray track in data f . (b) Ray-based: data output in data Rf . (c)
Voxel-based: sequential data read from f . (d) Voxel-based: data output in data Rf .

hardware features of FPGA, we rearrange data flow of reprojection process from
ray-based to voxel-based to ensure data independency of inner loop. As shown
in Fig. 2(a) and (b), ray-based orienting calculate the path of rays in f and load
corresponding data. The loaded data is process and then output in Rf accord-
ingly. However The load sections of different rays overlap a lot, which causes
huge load conflicts. Those conflicts are unpredictable and make initial interval
(II) unbearable. To solve this problem, we read voxel data from f sequentially
and find out the rays that contain voxel data as Fig. 2(c) and (d) shows. We
find that adjacent voxels always belong to adjacent rays. So we cache the output
data instead of saving it until the current voxel is irrelevant to it. In this way
pipeline among voxels and be carried out and the II could be reduced.

Table 1. Time complexity comparison. The value 1.4 at row.4 & col.2 is an experimen-
tal result of data reuse. The value 5 at row.2 & col.3 is the size of tuple that describe
a projection.

Method Trial cost Trial per iter. Specific case

NES 1 ×R + 1 × S Np × 5 70 ×R
Proposed (w/o data reuse) 6 ×R + 1 × S 1 7 ×R
Proposed (w/ data reuse) 1.4 ×R + 1 × S 1 2.4 ×R

4 Experiments and Result

The dataset we use for experiment is a conical-tilt projection series collected by
FEI Tecnai 12 and 2048×2048 CCD Gatan camera. The sample were tilt to 55◦

and then rotated by 5◦ interval (72 projections in total). One of its projection is
displayed in Fig. 3(a). And the test is carried out on a linux platform with 2×E5-
2650 v3, 64 GB Memory and Tesla K80. The synthesis tool is Vivado 2019.1 and
synthesis configuration is based on Xilinx ZCU102.

Using this dataset as input, we run both proposed method and NES method
for alignment. Popular feature-based method [3] does not provide a solution for
conical tilt datasets, so it is temporarily excluded. For NES method, we col-
lect the total time cost and the final alignment result. For proposed method,
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Table 2. Similarity indicators comparison of different alignment methods.

Method Avg MSE Avg RAE Avg NCC

Raw 92.8 0.991 0.449

NES 18.3 0.188 0.873

Proposed (one iter) 18.3 0.191 0.871

Proposed (two iters) 18.2 0.189 0.870

alignment results and detailed time costs after every iteration are recorded. For
every alignment result, we reproject corresponding reconstruction image using
configuration determined by the result to obtain reprojection images. Then the
similarity between reprojection images and input conical-tilt dataset is evaluated
using indicators like mean squared error (MSE), relative average error (RAE),
and normalized cross correlation (NCC). The similarity indicators reveal the
accuracy of the alignment. Specially, When accuracy is higher, the MSE value
is lower, RAE value is lower and NCC value is higher. Table 2 shows the aver-
age indicators value of different projections. The projection process, which is
the bottleneck, is C-synthesised on Vivado HLS with target ap clk = 10ns and
resource limited by Xilinx ZCU102.

Table 3. Time cost details of methods.

Method OpenCL init (s) Reproj (s) Recon (s) IO (s) Total (s)

NES – – – – 5520

Prop (one iter) 4.5 56.2 50.6 67.0 178.3

Prop (two iters) 9.0 112.4 75.9 134.0 331.3

HLS (reproj only) II= 1 Latency=10.6E8 ∼9.2

Except for quantitative evaluation, for visual observation, cross section of
reconstruction results by proposed method and NES method is shown in Fig. 3(b)
and (c). The sharpness and clarity of images by both methods is comparable.

The time cost information of methods is listed in Table 3. The result shows
a significant speed-up of 16.7× between NES method and proposed method.
The HLS simulation for reprojection process also has a 6.6× speed-up over our
well-optimized OpenCL program on Tesla K80.
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Fig. 3. Experimental data and reconstruction results comparison of different alignment
methods.

5 Conclusion

Effective alignment for nanometer-scale electron is currently a challenge. Using
the gradient-based approach, we have derived a descent method which decom-
poses the problem into a computational friendly optimization problem. This
method is capable of accurate alignment for datasets with no fiducial markers.
The experiment results show the reliability and efficiency. Compared with the
NES method, our method manage to achieve comparable accuracy with 16.7×
efficiency, which enables operators or researchers to get fine reconstruction of
ROI almost instantly after data collection. For reprojection related process in
our method, a preliminary design based on Xilinx ZCU102 shows a 6.6× accel-
eration compared with a well-optimized OpenCL program on GPU.
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