
2072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Caffeine: Toward Uniformed Representation
and Acceleration for Deep Convolutional

Neural Networks
Chen Zhang , Member, IEEE, Guangyu Sun, Member, IEEE, Zhenman Fang , Member, IEEE,

Peipei Zhou, Peichen Pan, and Jason Cong, Fellow, IEEE

Abstract—With the recent advancement of multilayer convo-
lutional neural networks (CNNs) and fully connected networks
(FCNs), deep learning has achieved amazing success in many
areas, especially in visual content understanding and classifi-
cation. To improve the performance and energy efficiency of
the computation-demanding CNN, the FPGA-based accelera-
tion emerges as one of the most attractive alternatives. In this
paper, we design and implement Caffeine, a hardware/software
co-designed library to efficiently accelerate the entire CNN and
FCN on FPGAs. First, we propose a uniformed convolutional
matrix-multiplication representation for both computation-bound
convolutional layers and communication-bound FCN layers.
Based on this representation, we optimize the accelerator micro-
architecture and maximize the underlying FPGA computing and
bandwidth resource utilization based on a revised roofline model.
Moreover, we design an automation flow to directly compile high-
level network definitions to the final FPGA accelerator. As a case
study, we integrate Caffeine into the industry-standard software
deep learning framework Caffe. We evaluate Caffeine and its
integration with Caffe by implementing VGG16 and AlexNet
networks on multiple FPGA platforms. Caffeine achieves a peak
performance of 1460 giga fixed point operations per second on a
medium-sized Xilinx KU060 FPGA board; to our knowledge, this
is the best published result. It achieves more than 100× speed-
up on FCN layers over prior FPGA accelerators. An end-to-end
evaluation with Caffe integration shows up to 29× and 150×
performance and energy gains over Caffe on a 12-core Xeon

Manuscript received January 3, 2017; revised May 24, 2017 and September
18, 2017; accepted November 12, 2017. Date of publication October 18, 2018;
date of current version October 16, 2019. This work was supported in part
by the Center for Domain-Specific Computing Industrial Sponsors, including
Fujitsu Labs, Huawei, Intel, Mentor Graphics, and NEC, in part by NSF China
under Award 61572045, in part by UCLA/PKU Joint Research Institute, in
part by the Chinese Scholarship Council, and in part by the AsiaInfo Inc.
This paper was recommended by Associate Editor D. Chen. (Corresponding
author: Chen Zhang.)

C. Zhang is with the Center for Energy-Efficient Computing and
Applications, Peking University, Beijing 100871, China, and also with
the Center for Domain-Specific Computing, University of California at
Los Angeles, Los Angeles, CA 90095 USA (e-mail: chen.ceca@pku.edu.cn).

G. Sun is with the Center for Energy-Efficient Computing and Applications,
Peking University, Beijing 100871, China.

Z. Fang and P. Zhou are with the Center for Domain-Specific Computing,
University of California at Los Angeles, Los Angeles, CA 90095 USA.

P. Pan is with Falcon Computing Solutions Inc., Los Angeles,
CA 95054 USA.

J. Cong is with the Center for Energy-Efficient Computing and
Applications, Peking University, Beijing 100871, China, also with the Center
for Domain-Specific Computing, University of California at Los Angeles,
Los Angeles, CA 90095 USA, and also with Falcon Computing Solutions
Inc., Los Angeles, CA 95054 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2785257

server, and 5.7× better energy efficiency over the GPU imple-
mentation. Performance projections for a system with a high-end
FPGA (Virtex7 690t) show even higher gains.

Index Terms—Caffe, CNN FPGA engine, convolutional neural
network (CNN), deep learning, hardware/software co-design.

I. INTRODUCTION

IN THE last few years, deep learning has achieved amazing
success in many areas, especially in computer vision and

speech recognition. Among various deep learning algorithms,
convolutional neural networks (CNNs) has become the most
popular for visual content understanding and classification,
with significantly higher accuracy than traditional algorithms
in various compute vision tasks, such as face recognition,
image and video processing [1]–[3]. Now CNN is becoming
one of the key algorithms in many modern applications, and
is attracting enthusiastic interest from both the academic com-
munity [1], [3], [4] and industry heavyweights like Google,
Facebook, and Baidu [5]–[7]. With the increasing image classi-
fication accuracy improvements, the size and complexity of the
multilayer neural networks in CNN have grown significantly,
as evidenced by the rapid evolvement of real-life CNN models,
such as AlexNet, ZFNet, GoogleLeNet, and VGG [8]–[11].
This puts overwhelming computing pressure on conventional
general-purpose CPUs in light of the recent slowdown of
Moore’s law. Therefore, various accelerators—based on GPUs,
FPGAs, and even ASICs—have been proposed to improve the
performance of CNN designs [12]–[15]. Due to its low power,
high energy efficiency, and reprogrammability, the FPGA-
based approach is now one of the most promising alternatives
and has stimulated extensive interest [13], [16]–[29].

Most prior FPGA acceleration studies on
CNN [13], [16]–[22], [26] mainly focus on the convolu-
tion layer in CNN, since it is computation-bound and is the
most timing-consuming layer. However, this leads to three
limitations. First, other unaccelerated layers in CNN cannot
get that high energy efficiency from FPGAs. Second, there
is significant intermediate data communication overhead
between unaccelerated layers on a CPU and the accelerated
convolution (CONV) layer on an FPGA through the PCIe con-
nection, which diminishes the overall performance gains [30].
Third, after the FPGA acceleration of the CONV layer, other
layers—especially the indispensable fully connected network
(FCN) layer that is communication-bound—can become the
new bottleneck in CNN. Based on our profiling (detailed in
Section II-B), the FCN layer actually occupies more than
50% of the total execution time in CNN after the CONV
layer is accelerated on an FPGA.

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8458-6499
https://orcid.org/0000-0003-0603-9697

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2073

To address the above limitations, two of the latest stud-
ies [23], [24] started implementing the entire CNN on an
FPGA. The work [23] transforms a convolution layer into
a regular matrix-multiplication (MM) in the FCN layer, and
implements an MM-like accelerator for both layers. The other
work [24] takes an opposite approach: it transforms a regular
MM into a convolution, and implements a convolution acceler-
ator for both CONV and FCN layers. While these two studies
make a good start on accelerating the entire CNN on an FPGA,
the straightforward transformation does not consider potential
optimizations. They demonstrated a performance of approx-
imately 1.2 giga fixed point operations per second (GOPS),
leaving large room for improvement.

In this paper, we aim to address the following key chal-
lenges in efficient FPGA acceleration of the entire CNN. First,
what is the right mathematical representation for a uniformed
acceleration of the computation-bound CONV layer and
the communication-bound FCN/deep neural network (DNN)
layer?1 Second, how do we design and implement an efficient
and reusable FPGA engine for CNN that maximizes the under-
lying FPGA computing and bandwidth resource utilization,
while still maintaining enough programmability for various
layer configurations? Third, how do we provide software pro-
grammers an easy-to-use interface such that they can still write
high-level network definitions while taking advantage of our
Caffeine FPGA engine?

To find the right programming model and efficient imple-
mentation for CNN kernels, we first analyze the widely used
regular MM representation in most CPU and GPU studies.
These studies usually convert a convolution layer to a regular
MM in the FCN layer, and leverage the well-optimized (with
vectorization) CPU libraries like Intel MKL and GPU libraries
like cuBLAS for a regular MM [12], [31]. However, the con-
volutional MM to regular MM transformation requires data
duplication in CNN. According to this paper, this duplication
results in up to 25× more data volume for the input fea-
ture maps (FMs) in the CONV layer, and thus diminishes the
gains of FPGA acceleration considering that FPGA platforms
have extremely limited bandwidth (about 10–20 GB/s [32])
compared to CPU/GPU platforms (up to 700 GB/s [33]).
More importantly, according to this paper in Section III-C,
the FPGA effective bandwidth is very sensitive to memory
access burst lengths, which requires a more careful design for
bandwidth-bound FCN layers on FPGAs.

To avoid the data duplication and improve the bandwidth
utilization, we propose to use a convolutional MM representa-
tion. Instead of a straightforward mapping in prior work [24],
we batch a group of input FMs in the FCN layer together
into a single one in the new representation, which we call
input-major mapping, so as to improve the data reuse of the
weight kernels. Another alternative of this input-major map-
ping is achieved by reversing the input FM matrix and weight
kernel matrix, which we call weight-major mapping, based on
the observation that the latter matrix is much larger than the
former one in the FCN layer. As a result, the weight-major
mapping may have more data reuse, especially for the input
FMs which are easier to be reused by each weight access than
those in the input-major mapping considering the hardware

1As analyzed in Section II-B, other layers in CNN are relatively simple and
have marginal impact on the final performance and FPGA resource consump-
tion. We do implement those layers in the same FPGA, but we will mainly
discuss the CONV and FCN layers in this paper for simplicity. Note that the
FCN layer is also a major component of DNNs that are widely used in speech
recognition. For simplicity, we just use the term “FCN.”

Fig. 1. Overview of Caffeine framework.

resource limitation. Considering the complex data reuse and
memory burst access under the hardware resource limitation,
it is quite challenging to identify which one is absolutely bet-
ter between the input-major and weight-major convolutional
mappings. For a quantitative comparison, we apply an accurate
roofline-based model to guide their design space explorations
under different neural network shapes and batch sizes.

Based on the above uniformed representation, we design
and implement an efficient and reusable CNN/DNN FPGA
accelerator engine called Caffeine.2 First, Caffeine maximizes
the FPGA computing capability by optimizing multilevel data
parallelism within CNN, as well as fine-grained and coarse-
grained pipeline parallelism. Second, Caffeine maximizes the
underlying memory bandwidth utilization by combining both
on-chip and off-chip data reorganizations for the convolutional
MM representation. As a result, Caffeine can achieve high
performance for both the computation-bound CONV layer and
communication-bound FCN layer (more than 100× speed-up
over prior work [24]). To improve the portability of Caffeine
across different FPGA platforms, we design our FPGA accel-
erator in a systolic-like micro-architecture using high-level
synthesis (HLS) so that it can be easily scaled up to a larger
design [36]. In addition, Caffeine also supports various CNN
layer configurations with different precision requirements (i.e.,
both floating-point and fixed-point operations).Finally, we fur-
ther provide an automation flow for software programmers so
that they can easily take advantage of our FPGA accelerator
engine while still programming the highlevel CNN networks,
just as they do for CPUs and GPUs. As a case study, we inte-
grate Caffeine with the industry-standard Caffe deep learning
framework [12] We summarize our Caffeine work in Fig. 1.

In summary, this paper makes the following contributions.
1) We propose a uniformed mathematical representation

(convolutional MM) for efficient FPGA acceleration of
both CONV and FCN layers in CNN/DNN. In addition,
we also propose a novel optimization framework based
on the roofline model to find the optimal mapping of the
uniformed representation to the specialized accelerator.
Our optimization framework recommends weight-major
mapping and input-major mapping according to platform
constraints and NN configurations.

2) We customize an HW/SW co-designed efficient and
reusable CNN/DNN engine called Caffeine, where the
FPGA accelerator maximizes the utilization of comput-
ing and bandwidth resource. Caffeine achieves a peak
performance of 1460 GOPS for the CONV layer and
346 GOPS for the FCN layer with 8-bit fixedpoint oper-
ations on a medium-sized FPGA board (KU060). The

2The name Caffeine comes from Caffe FPGA engine, but it is a generic
library and not limited to the CAFFE. It can also be extended for other
frameworks like Torch and TensorFlow [34], [35].

2074 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Fig. 2. Inference (also known as feedforward) phase in CNN.

performance and energy gains are even higher when
projecting to a larger VC709 FPGA board.

3) We provide an automation flow for users to program
CNN in highlevel network definitions, and the flow
directly generates the final FPGA accelerator. We also
provide the Caffe–Caffeine integration, which achieves
29× and 150× end-to-end performance and energy gains
over a 12-core CPU and 5.7× better energy efficiency
over a GPU.

II. CNN OVERVIEW AND ANALYSIS

A. Algorithm of CNNs

As a typical supervised learning algorithm, there are two
major phases in CNN: 1) a training phase and 2) an infer-
ence (also known as feed-forward) phase. Since many industry
applications train CNN in the background and only perform
inferences in a real-time scenario, we mainly focus on the
inference phase in this paper. The aim of the CNN inference
phase is to get a correct inference of classification for input
images. Shown in Fig. 2, it is composed of multiple layers,
where each image is fed to the first layer. Each layer receives
a number of FMs from a previous layer and outputs a new set
of FMs after filtering by certain kernels. The convolutional
layer, activation layer, and pooling layer are for FM extrac-
tion, and the fully connected layers are for classification. A
more detailed introduction is in our conference paper [15].

Convolutional (CONV) layers are the main components of
CNN. The computation of a CONV layer is to extract fea-
ture information by adopting a filter on feature maps from a
previous layer. It receives N feature maps as input and outputs
M feature maps.

Pooling (POOL) layers are used to achieve spatial invari-
ance by subsampling neighboring pixels, usually finding the
maximum value in a neighborhood in each input feature map.

Activation (ReLU) layers are used to adopt an activation
function (e.g., an ReLU function) on each pixel of FMs from
previous layers to mimic the biological neuron’s activation [8].

Fully connected (FCN) layers are used to make final
predictions. An FCN layer takes “features” in a form of vec-
tor from a prior feature extraction layer, multiplies a weight
matrix, and outputs a new feature vector, whose computation
pattern is a dense matrix-vector multiplication.

B. Analysis of Real-Life CNNs

State-of-the-art CNNs for large visual recognition tasks usu-
ally contain billions of neurons and show a trend to go deeper
and larger. Table I lists some of the CNN models that have
won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) contest since 2012. These networks all contain
millions of neurons, and hundreds of millions of parameters
that include weights and intermediate FMs. Therefore, storing
these parameters in DRAM is mandatory for those real-life
CNNs. In this paper, we will mainly use the 16-layer VGG16
model [11].

TABLE I
RECENT CNN MODELS THAT WON THE ILSVRC CONTEST

TABLE II
COMPUTATION COMPLEXITY, STORAGE COMPLEXITY, AND EXECUTION

TIME BREAKDOWN OF CNN LAYERS IN THE VGG16 MODEL

Table II shows two key points. First, the CONV and
FCN layers present two extreme features. CONV layers are
very computation-intensive: they contain 19.3% of total data
but need 99.5% of computation. FCN layers are memory-
intensive: they need 0.4% of arithmetic operations but use
80.6% of the total amount of data. These two layers also
occupy most of the execution time (more than 99.9%). Second,
when CONV is accelerated, the FCN layer becomes the new
bottleneck, taking over 50% of computation time. Therefore,
we need to accelerate the entire CNN on an FPGA and
maximize the use of both FPGA’s computation and bandwidth
efficiency. Since a straightforward acceleration of the POOL
and ReLU layers is good enough due to their simplicity, in this
paper, we will mainly focus on discussing how to accelerate
both the CONV and FCN layers.

III. SPECIALIZED CONVOLUTION ACCELERATOR

There are several design challenges that obstacles an effi-
cient convolution accelerator design on an FPGA platform.
First, the organization of processing engines (PEs) and buffer
banks should be carefully designed in order to process on-
chip data efficiently. Second, loop tiling is mandatory to fit a
small portion of data on-chip. Third, integration with high-level
frameworks such as Caffe not only needs to guarantee optimal
performance with customized optimizations, but also requires
enough programmability of the specialized hardware. In the
following sections, we start from the original convolution code
in Fig. 3 and apply a combination of optimizations to achieve
a high-performance specialized hardware accelerator design.

A. Convolution Accelerator Overview

The computation pattern of a convolution layer is shown
in Fig. 3. Variables in red are all layer parameters, which are
set in CNN training and usually differ among layers. Loop
tiling and computation model on FPGA. FPGAs have limited
BRAM and DSP resources. In order to support real-life CNNs
with hundreds of mega bytes or even giga bytes of weights
and feature maps, our CNN accelerator design puts all the
data in DRAM and caches a part of weights, feature maps
and layer definitions in on-chip buffers before they are fed to
PEs. Fig. 3 shows a standard convolution layer’s computation
procedure. We further apply loop tiling to fit a convolution
layer to the FPGA. In CNN structure designs, variables R and
C (for the “rows” and “columns”) range from tens to thou-
sands; variables N and M (for the number of input and output
feature maps) range from tens to hundreds; KEL (for con-
volution kernel size) ranges from one to ten. So we do not

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2075

Fig. 3. Pseudo code of a convolution layer.

Fig. 4. Pseudo code of a tiled convolution layer.

tile on loops “k1 & k2” because of their small sizes. Other
loops are tiled into “tile loops” and “point loops.” Point loops
are for on-chip data’s computation, whose optimization is dis-
cussed in Section III-B. Tile loops are for bringing data tiles
on-chip, whose optimizations are discussed in Section III-C.
Fig. 4 shows a pseudo code of a tiled convolution layer.

1) Software-Definable Parameters: As described in Fig. 3,
a convolution layer is featured by a set of parameters
<M, N, R, C, K1, K2, S>. In order to enable our accelerator’s
programmability by software at run time without changing the
FPGA bitstream, we set parameters <M, N, R, C, K1, K2, S>
(which are variables in the blank rectangle in Fig. 4) to be
software-definable parameters. In our specialized hardware
design, we make them registers to control loop pipelines and
could be reset by decoding accelerator-specific instructions
during runtime.

2) Hardware-Definable Parameters: Except for software-
definable parameters, the other parameters in Fig. 4 are
hardware-definable parameters, which are labeled in the black
rectangle “OutSize & InSize & KerSize” for buffer sizes, “To
& Ti” for parallel PEs and “Data_type” for floating/fixed<bit-
width> point operators. They are set before bit-stream synthesis.
Larger values of “OutSize & InSize & KerSize” result in more
BRAM utilization and larger values of “To & Ti” result in more
parallel PEs. Whenever a user wants to switch to a new FPGA
device, they can simply reset hardware-definable parameters
to customize a new accelerator bitstream with our library.

B. Scalable Accelerator Architecture

Fig. 5 shows the computation structure after our
optimization. They are described in the following paragraphs.

Multilevel Data Parallelism: We implement two levels of
data parallelism as suggested in [13] for the sake of better
hardware utilization and circuit simplicity: 1) parallelism in
computing multiple output feature maps and 2) parallelism in
processing multiple input feature maps for each output feature

Fig. 5. Pseudo code of optimized on-chip computation.

Fig. 6. Scalable accelerator architecture design.

map. Each PE is an arithmetic multiplication of input feature
map pixels and corresponding weights.

1) Combined Data Pipeline Streaming: Fined Grained
Pipeline: In order to fully utilize computation resource, our
accelerator aims to achieve a pipeline initial interval (II) of 1;
i.e., each PE is able to process a pair of input data on every
cycle. We use a polyhedral-based optimization framework [37]
to optimize the pipelining schedule by permuting the “p,” “q,”
“r,” “c” loop levels to avoid loop carried dependence. Since
pooling layers and ReLU layers are usually an optional layer
following convolution layers, we also implement them in the
instruction pipeline so that they can be processed immediately
on convolution’s output. They can also be bypassed if there is
no such layer following a convolution layer. They can also be
configured through software-definable parameters. In coarse-
grained pipelining, we use the double buffering technique to
pre-fetch the next data tile for each PE so that the computa-
tion time can overlap with the data transfer overhead from the
device DRAM to FPGA’s BRAM.

2) Scalable Architecture: The computations shown in Fig. 5
are a typical map and reduction pattern. We further use a
systolic-like architecture to implement the above computations
so that the hardware design could be scalable to a larger device
with more parallel engines. Fig. 6 presents an overview of our
scalable accelerator architecture, which is designed in portable
HLS. Similar methods are also explored in work [25].

C. Accelerator Bandwidth Optimization

Since the FCN layer is bandwidth sensitive, we need to
be careful about the accelerator bandwidth optimization. In
order to have a sense of effective FPGA DRAM bandwidths
under different memory access patterns, we test this on the
latest Kintex Ultrascale KU060 FPGA as a representative
with Xilinx SDAccel 2015.3 flow. Fig. 7(f) plots the effec-
tive DRAM bandwidth under different memory access burst
lengths and bit-widths. We make two observations in effi-
cient FPAG DRAM bandwidth utilization. First, the effective
FPGA bandwidth (y-axis) goes up with the increase of burst

2076 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Fig. 7. Bandwidth optimization by DRAM layout reorganization. (a) Logical 3-D data layout. (b) Piece of data tile. (c) Physical data layout in on-chip buffer
per BRAM bank 0 and 1. (d) Row-major data layout in DRAM space. (e) Proposed data layout in DRAM space. (f) Effective FPGA DRAM bandwidth with
access length and bit-width.

Algorithm 1 DRAM Allocation and Data Organization
Input:

Parameters for feature map tensor shape, [M, R, C]
Parameters for Input BRAM buffer, [Tm, Tr, Tc]

Output:
A linear list of tensor index in DRAM,
List = {ai | i ∈ [0, M × R × C)}

1: for each [i, j, k] ∈ [M
Tm

, R
Tr

, C
Tc

] do
2: for each [it, jt, kt] ∈ [Tm, Tr, Tc] do
3: Tile_Size = Tm × Tr × Tc
4: Tile_Addr = (i + j × M

Tm
+ k × M

Tm
× R

Tr
) × Tile_Size

5: Point_Addr = it + jt × Tm + kt × Tm × Tr
6: Addr = Tile_Addr + Point_Addr
7: Append Addr in the mappingList
8: end for
9: end for

length (x-axis) and finally flattens out above some burst length
threshold, which is about 128 KB on 512-bit bitwidth in
our experiment. Limited burst length will greatly degrade
actual bandwidth performance, like 1 GB/s on 1 KB memory
burst access. Second, longer interface bit-width can achieve
higher peak bandwidth. The maximum effective bandwidth of
10 GB/s (about 83% of theoretical 12.8 GB/s) can be only
reached at 512 bit-width and above, when the burst length is
above 128 KB.

1) Off-Chip Bandwidth Optimization Opportunity: As ana-
lyzed earlier, the burst length and bit-width of DRAM interface
are two dominating factors for FPGAs’ effective bandwidth.
However, the widely used data tiling technique usually results
in a discontinuous DRAM access for the row-major data lay-
out in DRAM. We illustrate this using an example in Fig. 7.
Fig. 7(a) describes four input FMs in a logical 3-D represen-
tation, each with a size of 4 × 4. Each dimension is tiled by 2
so that each tile has 2 × 2 × 2 = 8 elements in total. The first
tile of input FMs is shown in Fig. 7(b). Fig. 7(d) presents its
corresponding data layout in DRAM in a row-major represen-
tation, which results in four discontinues blocks. Therefore, it
requires four DRAM accesses, each with a burst length of 2
floating points. This results in a pretty low memory bandwidth
utilization and can greatly degrade the overall performance,
especially for the bandwidth-intensive FCN layers.

2) On-Chip Buffer Access Optimization Opportunity:
BRAM banks are usually organized for maximum parallel data
access from massive parallel PEs. As illustrated in Fig. 7(c),
elements (0, 1, 4, 5) from input FM 0 should be put in bank 0,
while elements (16, 17, 20, 21) from input FM 1 should be put

in bank 1. However, such requirements would cause on-chip
bank write conflicts using the original DRAM organization in
Fig. 7(d). When loading continuous data blocks (0, 1) from
DRAM to BRAM (similar for other pairs), they will be written
to the same bank 0, which causes bank write conflicts and
introduces additional overhead.

3) Optimization: To improve the effective memory band-
width, we reorganize the DRAM layout as illustrated in
Fig. 7(e). First, we move the data for an entire tile to a
continuous space to improve the memory burst length and
bit-width. Second, we interleave the data for different BRAM
banks to reduce bank read/write conflicts. Algorithm 1 presents
the method for transforming the cube indexes in Fig. 7(a) to
indexes in linear DRAM space as shown in Fig. 7(e). Weight
and output tensors use a similar method.

IV. UNIFORMED CONV AND FCN REPRESENTATION

A. Prior Representation on CPUs and GPUs

Prior CPU and GPU studies [12], [31] most often used
the regular MM representation so as to leverage the well-
optimized CPU libraries like Intel MKL and GPU libraries
like cuBLAS. To achieve this uniformed acceleration, they
convert a convolutional MM in the CONV layer to a reg-
ular MM in the FCN layer. However, such a transformation
comes at the expense of data duplication, which diminishes the
overall performance gains in bandwidth-limited FPGA plat-
forms [23]. Fig. 9 illustrates the data duplication overhead
by using MM for the CONV layer computation in AlexNet
and VGG16 models. Compared to the original convolutional
MM representation, the regular MM representation introduces
7.6× to 25× more data for the input FMs, and 1.35× to 4.8×
more data for intermediate FMs and weights, which makes the
CONV layer communication-bound.

B. New Representation Adapted for FPGAs

To avoid the data duplication overhead, we propose to use
the convolutional MM representation, and transform the reg-
ular MM in the FCN layer to the convolutional MM in the
CONV layer. Instead of a straightforward mapping as proposed
in [24], we propose two optimized mappings to improve the
data reuse and bandwidth utilization: 1) input-major mapping
and 2) weight-major mapping.

1) Straightforward Mapping: For FCN shown in Fig. 8(a),
an input vector with size N will do pairwise multiplication
with a weight vector of size N and accumulate the results

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2077

Fig. 8. Input-major and weight-major mapping from the FCN layer to the CONV layer. (a) Fully connected layer. (b) Convolution layer. (c) Input-
major mapping. (d) Batched input-major mapping (batch size = 3). (e) Merged input-major mapping (Ker = 2×1). (f) Weight-major mapping. (g) Batched
weight-major mapping (batch size = 2). (h) Merged weight-major mapping (Ker = 2×1) batch.

Fig. 9. Overhead of regular MM for CONV.

to get one output value. There are M weight vectors and M
output values. For CONV shown in Fig. 8(b), similarly, N FMs
will convolve with N weight kernels, and then element-wise
addition is done for the convolution results to get one output
FM. There are M sets of weight kernels, and we will get M
output FMs.

In a straightforward mapping, each element in an input 1×N
vector of FCN maps to one input FM sized as Ri = 1, Ci = 1
of CONV. And each element in an 1×N weight vector of FCN
maps to one weight kernel of CONV sized as K1 = 1, K2 = 1.
This can be viewed in Fig. 8(c) when batch size is 1. Prior
work [24] first attempted to implement both CONV and FCN
using a similar mapping, and demonstrated a performance of
nearly 1.2 GOPS, leaving large room for improvement.

2) Input-Major Mapping: In real-life CNNs, multiple input
images are processed in a batch to improve throughput.
Therefore, in our input-major mapping, we can map a batch
of elements from different input vectors in FCN to the same
input FM in CONV. As a result, the data reuse of FCN weight
kernels is improved when convolving the elements from dif-
ferent images in the batched input FMs. When batch size is
batch, there are batch input vectors in FCN, and the reuse
ratio of FCN weight kernels is batch. Note batch cannot be
too large in the real-time inference phase.

Fig. 10. Input-major mapping.

To better illustrate the input-major mapping, we use
Fig. 8(d) to show how we map FCN to CONV when batch =
3, N = 4 and M = 2. The four elements of the first input
vector are mapped to the first element of each input FM, and
the four elements of the second input vector are mapped to the
second element of each input FM. Both the weight kernel size
and stride size are 1×1. While the weight kernels slide across
the input FMs, they will generate batch elements in each out-
put FM. In addition to the improved data reuse for weight
kernels, this batching also improves the memory access burst
length of FCN input and output FMs, which improves the
bandwidth utilization, as explained in Section III-C.

Another way to improve the memory burst length is to
increase the weight kernel size ker and batch ker elements
within a single weight (or input) vector in FCN to the same
weight kernel (or input FM) in CONV. Fig. 8(e) depicts an
example where we change ker from 1×1 to 1×2. Compared
to Fig. 8(c), two weights are grouped in one weight kernel, and
two input FMs are grouped into one input FM. Accordingly,
stride size changes with ker to 1×2.

Table V column FCN-input lists the parameters after input-
major mapping from FCN to CONV. The number of input
FMs decreases to (N/ker), and the number of elements in one

2078 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

input FM increases to batch×ker. The number of elements in
an output FM is batch.

3) Weight-Major Mapping: As another alternative to
improve the data reuse and bandwidth utilization, we propose
weight-major mapping, where input vectors of FCN map to
weight kernels of CONV, and weight vectors of FCN map to
input FMs of CONV. As shown in Fig. 8(f), every input vec-
tor of FCN in a batch transforms to one set of weight kernels.
Weight vectors of FCN are aligned in input FMs in a way that
weight elements at the same position of all weight vectors are
grouped into the same input FM. Therefore, each FCN input
can be reused Mfcn times (if it can be buffered on-chip) dur-
ing the convolution, which greatly improves the data reuse. In
addition, the memory burst length of FCN weights and FCN
output FMs are greatly improved as well. Similarly, the batch
size improves the data reuse of FCN weights and improves
the memory burst length of FCN input FMs in weight-major
mapping. In addition, it decides the number of FCN output
FMs that are available to be processed simultaneously.

Similar to input-major mapping, we can increase the kernel
size ker in FCN input FMs to increase the memory burst
length, with an example of ker = 2 shown in Fig. 8(g). Table V
column FCN-weight lists the parameters for weight-major
mapping from FCN to CONV.

4) Uniformed Representation: Since FCN now maps
to CONV, either using input-major mapping or weight-
major mapping, we use a uniformed representation (column
uniformed) for all cases in Table V. Considering the complex
data reuse and memory burst access under different batch and
kernel sizes, as well as the hardware resource constraints, it is
quite challenging to identify whether input-major mapping or
weight-major mapping is better. Therefore, we will conduct a
quantitative design space exploration of concrete parameters
in Section V.

V. DESIGN SPACE EXPLORATION

In this section, we discuss how to find the optimal solution
of mapping a CNN/DNN onto our accelerator architecture. In
Section V-A, we first use one concrete example to give read-
ers a sense of the differences of the two mapping methods on
their memory access features; and Section V-B gives formal
formulations. In system performance, computation capabil-
ity and memory access are two dominating factors to final
achievable performance. We propose to use roofline models to
accurately formulate the performance. In addition, as described
in Fig. 7(f), DRAM’s effective bandwidth is sensitive to access
patterns. We further take DRAM bandwidth features in our
formulations. In Sections V-B and V-C, we present our sys-
tematic methods of performance analysis and design space
exploration.

A. Case Study

We use the real case of a fully connected layer from VGG16
model (FCN 1) in our case study. It has an input vector
of 25 088 and an output vector of 4096. We study the dif-
ferences of two mapping methods to an accelerator with a
hardware configuration of <Tm, Tn, Tr × Tc, KernelSize> =
<32, 32, 4096, 3>. In order to simplify the explanation, let us
first discuss the mapping of Fig. 8(c) and (f) in this section.
More complicated situations will be discussed in Section V-B
with mathematical formulations.

Fig. 8(a) shows the original fully connected layer with
“25 088” inputs, “4096” outputs and “25 088×4096” weights.
According to the input-major mapping method described in

TABLE III
INPUT-MAJOR MAPPING (BATCH_SIZE = 1)

Fig. 11. Weight-major mapping.

TABLE IV
WEIGHT-MAJOR MAPPING (BATCH_SIZE = 1)

Section IV, the corresponding tiling method is 32×32, which
is shown as those bold connections in Fig. 8(a). Fig. 8(b)
shows the input/weight/output accelerator buffers and the tiled
FCN layer’s mapping into corresponding buffers. So the total
number of memory accesses (bursts) to the input vector is
(25 088 × 1) ÷ (32 × 1) = 784; the total number of memory
accesses to the weights is (25 088×4, 096)÷(32×32×1×1) =
100 352; the total number of memory accesses to the output
vector is (4096 × 1) ÷ (32 × 1) = 128. Table III summarizes
the total number of memory accesses and the burst length in
each memory access. Similarly, Fig. 11 presents the weight-
major mapping, where the tile size for the input buffer can be
much larger (as discussed in Section IV). Table IV shows its
corresponding data.

By comparing Tables III and IV, we can see that the weight-
major mapping has significantly less numbers of memory
accesses and longer burst lengths than the input-major map-
ping in this case study.

B. Analytical Comparison of Two Mapping Methods

In this section, we give a formulation of memory access pat-
terns by considering workload size and platform constraints.
We denote the hardware configuration of our accelerator as
“number of 〈input, output, weight〉 buffer = 〈Tn, Tm, Tn ×
Tm〉” and “size of each buffer = 〈Tr × Tc, Tr × Tc, K × K〉,”
which are exactly the following notations in Fig. 5.

Given the uniformed representation in Table V, the num-
ber of memory accesses can be correspondingly calculated as
shown in Table VI. In this table, M, N, R, C, and K are fol-
lowing notations from Table V’s column 2 (uniformed). When
considering input-major mapping’s and weight-mapping’s con-
crete memory access behavior, we simply replace uniformed
notations with the FCN-input or FCN-weight in Table V.

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2079

TABLE V
UNIFORMED REPRESENTATION PARAMETERS FOR CONV, FCN
INPUT-MAJOR MAPPING, AND FCN WEIGHT-MAJOR MAPPING

TABLE VI
NUMBER OF DRAM ACCESSES

The remaining part of Table VI summarizes input-major
and weight-major mapping of memory access. Their major
differences are in their “weight” and “output” DRAM access.
For weight, input-major and weight-major mapping meth-
ods of DRAM accesses are �(Nfcn/ker/Tn)��(Mfcn/Tm)� and
�(Nfcn/ker/Tn)��(batch/Tm)�, respectively. The two formu-
lations are almost the same except for “Mfcn” and “batch.”
Real-life network configuration’s Mfcn is usually in a scale
of thousands and Tm is in tens (it is constrained by DSP
and BRAM resources, for example “〈Tm, Tn〉 = 〈32, 32〉”
uses 1024 multiplication and accumulation operators), while
the tunable parameter batch is smaller or equal to Tm. So
�(Mfcn/Tm)� would be significantly larger than �(batch/Tm)�.
For the output’s DRAM transfer, the considering denomina-
tor is “Tr · Tc” which is for FMs and usually very large.
At our setting, Tr · Tc is 226 × 30 = 6780. With simi-
lar deductions, �(Mfcn/Tm)��(batch/Tr · Tc)� would also be
significantly larger than �(batch/Tm)��(Mfcn/Tr · Tc)�.

Thus, given an accelerator information 〈Tm, Tn, Tr, Tc〉 and
FCN workload configuration 〈Nfcn, Mfcn, ker, batch〉, we are
able to calculate all DRAM traffic following formulations in
Table VI. With the above formulations, we estimate the attain-
able performance by jointly considering both computation
capability and bandwidth performance in the next section.

C. Revised Roofline Model for Caffeine

1) Original Roofline Model: The roofline model [38] is ini-
tially proposed in multicore systems to provide insight analysis
of attainable performance by relating processors’ peak compu-
tation performance and the off-chip memory traffic. Equation 1
formulates the attainable throughput of an application on a spe-
cific hardware platform. Floating-point performance (GFLOPS)
is used as the metric of throughput. The actual floating-point
performance of an application kernel can be no higher than the
minimum value of two terms. The first term describes the peak
floating-point throughput provided by all available computation
resources in the system, or computational roof. Operations per
DRAM traffic, or the computation-to-communication (CTC)
ratio, feature the DRAM traffic needed by a kernel in a specific
system implementation. The second term bounds the maximum
floating-point performance that the memory system can support
for a given CTC ratio

AttainablePerf. = min

{
Computational Roof
CTC Ratio × BW.

(1)

Previous work [13] uses the roofline model to optimize
the FPGA accelerator design. However, the original roofline

model used in [13] ignores the fact that input/output/weight
arrays have different data volumes in each tile. According to
Fig. 7(f), different burst lengths and access patterns will result
in different effective bandwidths. Thus, different designs have
different final bandwidth rooflines, which makes the origi-
nal roofline-based method’s prediction for bandwidth-intensive
applications extremely inaccurate, like fully connected layers.
As proposed in [13], the original total number of DRAM
access in one layer’s computation is given by the follow-
ing equation, where β denotes the corresponding size of
input/output/weight data tile, and α denotes the number of
times of corresponding data transfer for input/output/weight
data

DRAM_Access =
in,weight,out∑

i

αi × βi. (2)

In fact, (2) does not accurately model the total DRAM traf-
fic. For example, as shown in Fig. 7(f), the effective bandwidth
on 1 KB burst DRAM access is only 1 GB/s—10× lower
than the maximum effective bandwidth of 10 GB/s. Therefore,
the original roofline model becomes extremely inaccurate in
bandwidth-sensitive workloads because it actually takes 10×
longer time to make the data transfer than expected. Therefore,
we would like to multiply a normalization factor of 10× on
the original DRAM access number to approach the accurate
effective DRAM traffic.

2) Revised Roofline Model for Caffeine: In general, we pro-
pose to normalize the DRAM traffic of input/output/weight
accesses to the maximum effective bandwidth with a normal-
ization factor γ

DRAM_Access =
in,weight,out∑

i

γi × αi × βi (3)

where γ is defined by γ = max _bandwidth/f (β). The f func-
tion is given by the curve of effective bandwidth with respect
to the burst length, shown in Fig. 7(f).

Given a specific set of software-definable parameters for
one layer 〈N, Ri, Ci, M, Ro, Co, K, S〉 and a specific
hardware definable parameter 〈Ti, To, Tr, Tc〉, as described
in Section III-A, we can determine the x-axis and y-axis
value in the roofline model by computing its computational
performance and CTC ratio.

Similar to [13], the computational performance is given by

Comput. Perf. = total computation operations

execution cycles

= 2 · N · M · Ro · Co · K1 · K2⌈
N/Ti

⌉ · ⌈
M/To

⌉ · Ro · Co · K1 · K2
. (4)

Our revised CTC ratio is given by

CTC ratio = total computation operations

total DRAM traffic

= 2 · N · M · Ro · Co · K1 · K2

γin · αin · βin + γwght · αwght · βwght + γout · αout · βout
.

(5)

Given above revised roofline mode, we can have a design
space exploration to find the optimal method mapping from
the uniformed representation to our hardware accelerator.

D. Design Space Exploration

Since optimizing the CONV layer with the roofline model
has been extensively discussed in [13], and there is a space

2080 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

(c) (d)

(e) (f)

(a) (b)

Fig. 12. (a) Input-major and (b) weight-major’s CTC ratio. (c) Input-major
and (d) weight-major of revised roofline model. (e) Input-major and (f) weight-
major comparison among original, revised roofline models and on-board tests
of FCN.

constraint, we mainly focus on optimizing the mapping of the
FCN layer to the uniformed representation using our revised
roofline model. Specifically, it is a problem of choosing input-
major/weight-major mapping methods and the optimal batch
and ker parameters, given the FCN layer configuration and
hardware configuration.

We use the VGG16 model’s FCN layer 1 as an exam-
ple; it has an input of 25 088 (Nfcn) neurons and output
of 4096 (Mfcn) neurons, whose notations follow Table V.
Batch and ker are tunable parameters for mapping FCN to
the uniformed representation as described in Section IV. We
use the hardware configuration from the Kintex Ultrascale
KU060 platform and set hardware definable parameters as
〈To, Ti, Tr ·Tc, TK1 ·TK2〉 = 〈32, 32, 6272, 25〉. We choose our
tile sizes based on the guidance of [13] to maximize the FPGA
resource utilization. Users can configure their own tile sizes.

1) FCN Input-Major Mapping: Fig. 12(a) presents the
design space of FCN input-major mapping in terms of CTC
ratio under various batch (batch) and kernel (ker) sizes. First,
given a fixed ker, the CTC ratio increases with batch, because
batch FCN inputs reuse FCN weights, and memory burst
length is increased by batch which results in higher effec-
tive DRAM bandwidth. The CTC ratio flattens out when
batch is bigger than on-chip BRAM size. Second, given a
fixed batch, the CTC ratio increases with ker when batch is
small, because this increases memory burst length and thus
benefits effective DRAM bandwidth. Finally, since the size
of input FM is given by batch · ker in Table V, the maxi-
mum batch that could be cached in on-chip BRAM decreases
when ker increases. Therefore, the CTC ratio decreases when
ker increases on a large batch, because the output FM burst
length (given by batch according to Table V) decreases. In the

input-major mapping, the maximum CTC ratio is achieved
with a parameter 〈batch, ker〉 = 〈16384, 1〉.

Fig. 12(c) presents input-major mapping’s attainable
performance using our revised roofline model. Each point rep-
resents an implementation with its computation performance
in GOPS and CTC ratio estimation, which are decided by
parameters 〈batch, ker〉 according to our model. The red line
(bandwidth roofline, slope = 10 GB/s) represents the max
DRAM bandwidth that this FPGA platform supports. Any
point located above this line indicates that this implementation
requires higher bandwidth than what the platform can provide.
Thus, it is bounded by platform bandwidth, and the attainable
performance is then decided by the bandwidth roofline. From
this figure, we can see that all implementations of FCN with
input-major mapping are bounded by bandwidth. The high-
est attainable performance is achieved at the highest CTC
ratio, where 〈batch, ker〉 = 〈16384, 1〉, and this batch size is
unreasonable in a real-time inference phase.

Fig. 12(e) presents the on-board test performance of input-
major mapping and the comparison between performance
estimations from original and revised roofline models. Our
revised roofline model is much more accurate than the origi-
nal one, and our estimated performance is very close to that
of the on-board test.

2) FCN Weight-Major Mapping: Fig. 12(b) presents the
design space of FCN weight-major mapping in terms of CTC
ratio under various batch (batch) and kernel (ker) sizes. As
illustrated in Section IV-B3, batch represents the number of
concurrent PEs processing different output FMs in weight-
major mapping. Due to the FPGA resource constraints, we can
only put 32 such PEs in the KU060 FPGA. Therefore, we set
an up-limit of 32 to batch in weight-major mapping, which
is pretty small. Given a fixed ker, the CTC ratio increases
with batch since it increases the data reuse of FCN weights
and the memory burst length of FCN inputs. The size of ker
has marginal impact on weight-major mapping because it has
pretty good bandwidth utilization, even for ker = 1.

Fig. 12(d) presents weight-major mapping’s attainable
performance using our revised roofline model. Similar with
input-major mapping, all implementations of weight-major
mapping are bounded by bandwidth. In addition, small batch
size also leads to lower computational performance due to
less number of concurrent PEs in weight-major mapping. The
highest attainable performance is achieved at the highest CTC
ratio, where 〈batch, ker〉 = 〈32, 1〉, which is reasonable in a
real-time inference phase.

Fig. 12(e) presents the on-board test performance of weight-
major mapping and the comparison between performance esti-
mations from original and revised roofline models. Different
than input-major mapping, weight-major mapping has very
good data reuse as well as good effective bandwidth, as
illustrated in Section IV. So the proposed roofline model is
only slightly better than original model, and both models are
close to the on-board test. In addition, weight-major mapping
presents better performance than input-major mapping in cases
of small batch sizes.

Due to the advantages of weight-major over input-major
mapping in small batch sizes, in the remainder of this paper
we will use weight-major mapping for the FCN layer with the
best design point.

E. Design Space Exploration on Speech Applications

Previous sections are based on CNNs, which are mainly for
computer vision tasks. However, in many other areas such as

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2081

(a) (b)

Fig. 13. Design space exploration for hidden layers in [39]. (a) Input-major.
(b) Weight-major.

(a) (b)

Fig. 14. Design space exploration for bottleneck layers in [40]. (a) Input-
major. (b) Weight-major.

speech and auto-encoder, fully connected neural network is
also a major type of workload, such as networks presented on
work [39]–[44].

Fig. 13 presents a design space of a hidden layer in
work [39], which has a very typical shape like other FCN
workloads.

Fig. 14 presents a design space of a bottleneck network,
which is also frequently used in prior work [40]–[42].
Significantly less number of neurons is bottleneck layer’s
major difference to typical networks. Compared to regular
NN layers with 2048 or more neurons, bottleneck layers
usually have much less neurons, such as 20 to 40 neurons
in work [40]. This will greatly influences CTC ratios. As
is presented in Fig. 14(b), solution “F4” has the highest
performance in weight-major mapping method. On the same
configuration (batch_size = 32, kernel_size = 16), weight-
major mapping method wins input-major mapping. However,
the highest input-major mapping solution “F3” achieves nearly
155 GPOS, which is almost the double of that of solution F4.
Actually, input-major mapping wins when batch_size is larger
than 128.

Under real service scenarios, there is a tradeoff between low
latency and high-throughput when users use small networks
such as bottleneck NN. When latency is more important,
we recommend weight-major mapping which achieve higher
performance on small batches. Otherwise we recommend,
input-major mapping for throughput. Since the choice depends
on real scenarios, we left the adventure for users.

VI. FROM HIGH-LEVEL NETWORK DESCRIPTION TO
SPECIALIZED CNN ACCELERATOR

Programming hardware for nonexperts is usually very dif-
ficult. Therefore, we propose an automation flow to apply our
proposed optimizations discussed in those sections to compile
the high-level network descriptions directly into the FPGA-
based specialized hardware accelerator. Our automation flow
has two cooperating sides: 1) software automation, which pro-
vides a compiler to map the high-level network definitions to
customized instructions for our specialized hardware and 2)
hardware automation, which is responsible for generating a
new FPGA accelerator bitstream.

A. Software Automation

With the proposed software-definable accelerator design, we
implement an automated flow to bridge the neural network
oriented high-level domain-specific language to our cus-
tomized accelerator design. Fig. 15 presents the automation
flow from Caffe standard inputs; these are defined in pro-
totxt and caffemodel files in our hardware-optimized model,
which includes all of the accelerator instructions (network
definitions), DRAM space allocations and accelerator-specific
weight data reorganizations. Overall, the key steps of our
automation flow include the following.

1) Network Parser (Network Model Parser and
Compilation): We first parse the structure of CNN’s
CONV/ReLU/POOL/FCN layers from Caffe’s network
definition file, which is described in prototxt file, to
a structured DAG-based data type to describe CNN’s
data flow. In addition, we read in the original CNN
layers’ weights and biases stored in Caffe’s caffemodel
file. This is the only part of our automation flow that is
specific to Caffe; all other parts can be reused in other
frameworks.

2) CNN Representation Transformation: In the next step
we transform FCN in the CNN DAG to a convolution
MM format with roofline-based optimization techniques
(as described in Sections IV and V). After the transfor-
mation, we generate accelerator-customized instructions
to describe the whole CNN for the FPGA accelerator.

3) Optimizer (Weights Transformation): In this step, we
prepare the CNN layers’ weights and biases and trans-
fer them into a format which is specifically opti-
mized for our customized accelerator, as described
in Section III-A. This transformation includes static
FPGA DRAM space allocation, weights and biases
reorganization, and floating-point to fixed-point for-
mat transformation when the accelerator is defined as
fixed-point by the user.

The above transformed layer definitions and weights and
biases data will be generated for a new CNN once and writ-
ten into FPGA DRAM through the PCIe interface. It will be
reused for all following input images, and there will be no
further weights or instructions communication. For each input
image, the FPGA accelerator will start from reading the first
CNN layer instructions stored in FPGA DRAM and stop to
reach CPU until the last layer instructions are finished.

B. Hardware Automation

In the analysis of CNN’s computation model in
Section III-A, we discussed an application-specific hardware
design with a series of computation and memory optimization
techniques. Our hardware automation plan is to build an easy-
to-use tool with such optimizations for users to customize the
hardware design for their own FPGA devices.

The key required information is the number of DSP
resources, on-chip storage capacity, and external memory
bandwidth provided by the platform; these are the constraints
to the performance of the accelerators. The output is a set
of hardware-definable parameters which have been depicted
in Fig. 4. With a highly structured hardware template, we use
HLS to generate the customized RTL as well as device-specific
bitstream with Xilinx’s SDAccel tool. The optimized microar-
chitecture proposed in Section III-B ensures its scalability to
larger devices to overcome the difficulties in placement and
routing.

2082 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

Fig. 15. Automation flow from high-level defined networks (Caffe) to hardware optimized accelerator.

Fig. 16. Caffe–Caffeine integration.

C. Caffe–Caffeine Integration

As a case study, we integrate Caffeine with the industry-
standard Caffe deep learning framework [12]. Note that
Caffeine can also be integrated into other frameworks like
Torch [34] and TensorFlow [35]. Fig. 16(left) presents an
overview of Caffeine’s HW/SW library and its integration with
Caffe. The integrated system accepts standard Caffe files for
network configuration and weight values. As discussed ear-
lier, the only part that is Caffe-specific is parsing the network
configurations and loading weights (steps 1 and 2) into our
Caffeine software library. Caffeine will take care of the rest.

There are two major execution phases in Caffeine. In
phase 1 (steps 3–6), it establishes the uniformed representation
and automatically decides the optimal transformation, as illus-
trated in Section V, and then reorders weights for bandwidth
optimization as illustrated in Section III-C. Finally, it initial-
izes the FPGA device with weights and layer configurations.
Phase 1 only needs to execute once unless users want to switch
to a new CNN network. In phase 2 (steps 7–11), Caffeine con-
ducts the CNN acceleration: in batch mode, it will accumulate
multiple CONV outputs and execute FCN once in a batch; in
single mode, it will execute CONV and FCN once for each
input image. A detailed execution time breakdown of Caffeine
running the VGG16 network on a KU060 platform is shown
in the right-hand part of Fig. 16 with a batch size of 32, where
CONV layers dominate the entire execution again.

VII. CAFFEINE RESULTS

A. Experimental Setup

1) CNN Models: To demonstrate the software-definable
features of Caffeine, we use two CNN models: 1) AlexNet [8]

and 2) VGG16 [11]. Users only need to write two configura-
tion files for them.

2) CPU and GPU Setup: The baseline CPU we use
is a two-socket server, each with a 6-core Intel CPU
(E5-2609 @ 1.9 GHz). We use an NVIDIA GPU
GTX1080 in our experiments. OpenBLAS and cuDNN 8.0
libraries are used for the CPU and GPU implementa-
tions [12]. In the following experiments, cuDNN is set
to CUDNN_CONVOLUTION_FWD_ALGO_DIRECT mode,
which the library is optimized on the original 6-loops shown
in Fig. 3.

3) FPGA Setup: The main FPGA platform we use is the
Xilinx KU3 board with a Kintex Ultrascale KU060 (20 nm)
and a 8 GB DDR3 DRAM, where SDAccel 2015.3 is used to
synthesize the bitstream. To demonstrate the portability of our
hardware-definable architecture, we also extend our design to
the VC709 (Virtex 690t, 28 nm) FPGA board. We create the
IP design with Vivado HLS 2015.2 and use Vivado 2015.2 for
synthesis.

B. Caffeine Results on Multiple FPGAs

To demonstrate the flexibility of Caffeine, we evaluate
Caffeine using: 1) two FPGA platforms, KU060 and VC709
and 2) three data types, 32-bit floating-point, and 16-bit and
8-bit fixed-point; and 3) two network models, AlexNet and
VGG16, as shown in Fig. 17.

First, Fig. 17(a) and (b) presents the VGG16 performance
for 16-bit fixed-point on VC709 and KU060 platforms,
respectively. VC709 can achieve higher peak performance
(636 GOPS) and higher overall performance of all
CONV+FCN layers (354 GOPS) than KU060’s peak
365 GOPS and overall 266 GOPS. Both figures show that
most layers can achieve near-peak performance. Layer 1 is a
special case because it only has three input FMs (three chan-
nels for RBG pictures). For both platforms, the FCN layer’s
performance is quite similar (around 170 GOPS for overall
performance of all FCN layers) because it is mainly bounded
by bandwidth.

Second, Fig. 17(b)–(d) presents the differences between
the 16-bit fixed-point, 8-bit fixed-point, and 32-bit floating-
point on KU060. Both CONV and FCN layers show a drastic
increase in performance from 32-bit floating-point to 16-bit
fixed-point. For CONV layers, fixed-point saves computation
resources and thus enables more parallelism. For FCN lay-
ers, fixed-point saves bandwidth because of its fewer bits. The

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2083

(a) (b) (c)

(d) (e) (f)

Fig. 17. Caffeine results on multiple FPGA boards for different CNN models and data types. (a) VC709 VGG 16-bit fixed-point. (b) KU VGG 16-bit
fixed-point. (c) KU VGG 8-bit fixed-point. (d) KU VGG 32-bit floating-point. (e) KU AlexNet 16-bit fixed-point. (f) KU Speech FCN 16-bit fixed-point.

TABLE VII
COMPARISON WITH OTHER FPGA WORK

KU060 board with 8-bit operation can achieve as high as 1.46
TOPS peak performance for the CONV layer.

Third, Fig. 17(b) and (e) presents the KU060 platform’s
performance on VGG16 and AlexNet. VGG16 has better
performance since it has a more regular network shape which
is more suitable for accelerators (better utilization after tiling).

Fourth, experimental results show that our results are quite
near FPGA’s peak performance. For the KU060 FPGA case in
Fig. 17(b), the theoretical peak performance with 1024 DSPs
on a 16-bit fixed-point accelerator is “1024 × 2 × 0.2 GHz =
409.6 GOPS,” while our attainable end-to-end test is 365
GOPS of peak performance. For KU060 FPGA with single-
precision float in Fig. 17(d), theoretical peak performance is
“100 GFLOPS,” while our evaluation peak performance is 96
GFLOPS.

Fifth, Fig. 17(f) shows experimental results on the fully con-
nected network for speech [39]. With our approach, it achieves
nearly 150 GOPS performance.

C. Comparison With Prior FPGA Work

We compare our accelerator design to three state-of-the-art
studies in Table VII. We compare four terms of performance:
1) peak CONV layer performance; 2) overall performance of

Fig. 18. GPU versus FPGA performance.

all CONV layers; 3) overall performance of all FCN layers;
and 4) overall performance of all CONV+FCN layers. This
paper significantly outperforms all three prior studies in all
terms of performance. Our FCN layer achieves more than
100× speed-up over previous work. In addition, very-low bit
(binarized) network technique [27] is orthogonal to this paper.

D. End-to-End Comparison With CPUs and GPUs

We conduct an end-to-end comparison between
Caffe–Caffeine integration with existing optimized CPU
and GPU solutions [12] for VGG16 in Table VIII. For fair
comparison, we use GOPS as the standard metric. With on-
board (KU060) testing, our integration using 8-bit fixed-point
operations demonstrates an end-to-end performance of 29×
speed-up and 150× energy efficiency over 12-core CPU,
and 5.7× and 2× energy efficiency over batch = 1 and
batch = 16 cuDNN implementations respectively. Fig. 18
shows detailed layer-wise performance comparison between
8-bit fixed Ku060 FPGA implementation and GTX1080
GPU cuDNN. Our FPGA implementation has approximately
similar performance to GPU when batch = 1. But batch = 16

2084 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 11, NOVEMBER 2019

TABLE VIII
END-TO-END COMPARISON WITH CPU/GPU PLATFORMS

TABLE IX
FPGA RESOURCE UTILIZATION OF CAFFEINE

(a) (b)

Fig. 19. GPU implementation of input- and weight-major mappings.
(a) Kernel size = 1*1. (b) Kernel size = 4*4.

GPU implementation has much higher performance (lower
energy efficiency).

Finally, Table IX presents the FPGA resource utiliza-
tion of the above implementations. SDAccel uses a partial
reconfiguration to write bit-stream, and thus it has an up-limit
of 60% of all available resources. We use about 50% of
DSP resources on the KU060 board. We use 80% of DSP
resources on the VC709 board. Note that for the 8-bit fixed-
point implementation, it is more resource efficient and mainly
uses the LUT resources. Caffeine on the KU060 board runs at
a frequency of 200 MHz, and on VC709 it runs at a frequency
of 150 MHz.

E. Input-Major/Weight-Major Mapping on GPUs

We further verify our idea on GPU implementations. We
took one optimized implementation on the original 6-loops as
shown in Fig. 3 from cuDNN library. We transform the VGG-
16 FCN-2 layer to a convolutional layer using both input-major
and weight-major mappings. Fig. 19 shows that for most of the
cases under 1×1 and 4×4 kernel sizes, weight-major mapping
outperforms input-major mapping.

F. Comparison With TPUs

Google’s Tensor Processing Unit [44] cites work [13] and
argues that their systolic micro-architecture design is more
friendly for frequency tunning. In this paper, we also improves
and use systolic design. However, TPU’s performance on
MLP for speech are greatly degraded because of strict band-
width constraints. Our proposal of input-major/weight-major
mapping in this paper can be helpful for TPU to optimize

the computation and communication ratio and thus improve
overall performance.

VIII. CONCLUSION

In this paper, we proposed a uniformed convolutional MM
representation to accelerate both the computation-bound con-
volutional layers and communication-bound fully connected
layers of CNN/DNN on FPGAs. Based on the uniformed rep-
resentation, we designed and implemented Caffeine, a HW/SW
co-designed reusable library to efficiently accelerate the entire
CNN/DNN on FPGAs. Finally, we also provide an automation
flow to integrate Caffeine into the industry-standard software
deep learning framework Caffe. We evaluated Caffeine and its
integration with Caffe using both AlexNet and VGG networks
on multiple FPGA platforms. Caffeine achieved up to 1460
GOPS on a KU060 board with 8-bit fixed-point operations, and
more than 100× speed-up on fully connected layers over prior
FPGA accelerators. Our Caffe integration achieved 29× and
150× performance and energy gains over a 12-core CPU, and
5.7× better energy efficiency over GPU on a medium-sized
KU060 FPGA board.

REFERENCES

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the
gap to human-level performance in face verification,” in Proc. CVPR,
2014, pp. 1701–1708.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. ICCV, 2015, pp. 1026–1034.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” in
Proc. CVPR, 2014, pp. 580–587.

[4] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[5] A. Coates et al., “Deep learning with COTS HPC systems,” in
Proc. ICML, 2013, pp. III-1337–III-1345.

[6] Z. Zheng, W. Jiang, G. Wu, and E. Y. Chang, “SpeeDO: Parallelizing
stochastic gradient descent for deep convolutional neural network,” in
Proc. LearningSys, 2015, pp. 1–6.

[7] K. Yu, “Large-scale deep learning at Baidu,” in Proc. ACM CIKM, 2013,
pp. 2211–2212.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[9] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. ECCV, 2014, pp. 818–833.

[10] C. Szegedy et al., “Going deeper with convolutions,” in Proc. CVPR,
2015, pp. 1–9.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

[12] Y. Q. C. Jia. (2013). An Open Source Convolutional Architecture for Fast
Feature Embedding. [Online]. Available: http://caffe.berkeleyvision.org

[13] C. Zhang et al., “Optimizing FPGA-based accelerator design for
deep convolutional neural networks,” in Proc. ACM FPGA, 2015,
pp. 161–170.

[14] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGPLAN Notices, vol. 49, no. 4,
pp. 269–284, 2014.

[15] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neu-
ral networks,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2016, pp. 1–8.

[16] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-
based processor for convolutional networks,” in Proc. IEEE FPL, 2009,
pp. 32–37.

[17] S. Chakradhar et al., “A dynamically configurable coprocessor for con-
volutional neural networks,” ACM SIGARCH Comput. Archit. News,
vol. 38, no. 3, pp. 247–257, 2010.

ZHANG et al.: CAFFEINE: TOWARD UNIFORMED REPRESENTATION AND ACCELERATION FOR DEEP CNNs 2085

[18] D. Aysegul et al., “Accelerating deep neural networks on mobile pro-
cessor with embedded programmable logic,” in Proc. IEEE NIPS,
2013.

[19] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
“A programmable parallel accelerator for learning and classification,” in
Proc. ACM PACT, 2010, pp. 273–284.

[20] M. Sankaradas et al., “A massively parallel coprocessor for convolutional
neural networks,” in Proc. IEEE ASAP, 2009, pp. 53–60.

[21] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Proc.
IEEE ICCD, 2013, pp. 13–19.

[22] K. Ovtcharov et al., “Accelerating deep convolutional neural networks
using specialized hardware,” Microsoft Res. Whitepaper, vol. 2, no. 11,
2015.

[23] N. Suda et al., “Throughput-optimized openCL-based FPGA accelerator
for large-scale convolutional neural networks,” in Proc. ACM FPGA,
2016, pp. 16–25.

[24] J. Qiu et al., “Going deeper with embedded FPGA platform
for convolutional neural network,” in Proc. ACM FPGA, 2016,
pp. 26–35.

[25] X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in Proc. ACM DAC, 2017,
pp. 1–6.

[26] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing loop oper-
ation and dataflow in FPGA acceleration of deep convolutional neural
networks,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays,
2017, pp. 45–54.

[27] R. Zhao et al., “Accelerating binarized convolutional neural networks
with software-programmable FPGAs,” in Proc. ACM FPGA, 2017,
pp. 15–24.

[28] J. Zhang and J. Li, “Improving the performance of openCL-based FPGA
accelerator for convolutional neural network,” in Proc. FPGA, 2017,
pp. 25–34.

[29] C. Zhang and V. Prasanna, “Frequency domain acceleration of con-
volutional neural networks on CPU-FPGA shared memory system,”
in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2017,
pp. 35–44.

[30] Y.-K. Choi et al., “A quantitative analysis on microarchitectures of
modern CPU-FPGA platforms,” in Proc. DAC, 2016, pp. 1–6.

[31] J. Bergstra et al., “Theano: A CPU and GPU math expression compiler,”
in Proc. SciPy, vol. 4, 2010, p. 3.

[32] Vivado Design Suite, “Ultrascale architecture FPGAs memory interface
solutions v7.0,” Xilinx, San Jose, CA, USA, Rep., Apr. 2015.

[33] S. Mittal, “A survey of techniques for managing and leveraging caches in
GPUs,” J. Circuits Syst. Comput., vol. 23, no. 8, 2014, Art. no. 1430002.

[34] Torch7. [Online]. Available: http://torch.ch
[35] M. Abadi et al. (2016). TensorFlow: Large-Scale Machine

Learning on Heterogeneous Distributed Systems. [Online]. Available:
http://www.tensorflow.org

[36] K. Rupnow et al., “High level synthesis of stereo matching: Productivity,
performance, and software constraints,” in Proc. IEEE Int. Conf. Field
Program. Technol. (FPT), 2011, pp. 1–8.

[37] W. Zuo et al., “Improving high level synthesis optimization opportu-
nity through polyhedral transformations,” in Proc. ACM FPGA, 2013,
pp. 9–18.

[38] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[39] Z.-J. Yan, Q. Huo, and J. Xu, “A scalable approach to using DNN-
derived features in GMM-HMM based acoustic modeling for LVCSR,”
in Proc. Interspeech, 2013, pp. 104–108.

[40] F. Grézl, M. Karafiát, S. Kontár, and J. Cernocky, “Probabilistic
and bottle-neck features for LVCSR of meetings,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process. (ICASSP), vol. 4, 2007,
pp. IV-757–IV-760.

[41] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep bot-
tleneck features using stacked auto-encoders,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), 2013, pp. 3377–3381.

[42] D. Yu and M. L. Seltzer, “Improved bottleneck features using pretrained
deep neural networks,” in Proc. 12th Annu. Conf. Int. Speech Commun.
Assoc., 2011. pp. 237–240.

[43] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[44] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit.
(ISCA), 2017, pp. 1–12.

Chen Zhang (M’03) received the B.S. degree
in electronic engineering from the University of
Electronic Science and Technology of China,
Chengdu, China, in 2012 and the Ph.D. degree from
Computer Science Department, Peking University,
Beijing, China, in 2017.

He is currently an Associate Researcher (II)
with Microsoft Research Asia, Beijing. His cur-
rent research interests include high performance and
energy-efficient computer architectures and systems
in deep learning.

Dr. Zhang is a member of ACM.

Guangyu Sun (M’07) received the B.S. and M.S.
degrees from Tsinghua University, Beijing, China,
in 2003 and 2006, respectively, and the Ph.D.
degree in computer science from Pennsylvania State
University, State College, PA, USA, in 2011.

He is an Associate Professor with the Center
for Energy-Efficient Computing and Applications,
Peking University, Beijing. His current research
interests include computer architecture, electronic
design automation, and acceleration system for mod-
ern applications.

Dr. Sun is currently serving as an Associate Editor of ACM JETC and
TECS. He is a member of ACM and CCF.

Zhenman Fang (M’03) received the Ph.D. degree in
computer science from Fudan University, Shanghai,
China.

He recently joined Xilinx, San Jose, CA,
USA, after a three-year Post-Doctoral Fellow with
the University of California at Los Angeles,
Los Angeles, CA. His current research interests
include intersection of heterogeneous and energy-
efficient computer architectures, big data workloads
and systems, and system-level design automation.

Dr. Fang is a member of the ACM.

Peipei Zhou received the B.S. degree in electrical
engineering from Chien-Shiung Wu Honor College
Southeast University, Nanjing, China, in 2012,
and the M.S. degree in electrical engineering
from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2014, where she
is currently pursuing the Ph.D. degree with
Computer Science Department, under supervision
of Prof. J. Cong.

Her current research interests include par-
allel/distributed architecture and programming,

performance and energy model for computer architecture design.

Peichen Pan received the Ph.D. degree in com-
puter science from the University of Illinois at
Urbana–Champaign (UIUC), Champaign, IL, USA,
in 1995.

He is the Vice President of engineering with
Falcon Computing Solutions Inc., Los Angeles, CA,
USA. His current research interests include system-
level and high-level synthesis, and FPGA accel-
eration of big-data applications, such as machine
learning and genomic data processing.

Dr. Pan received the David J. Kuck Outstanding
Ph.D. Thesis Award from UIUC in 1996.

Jason Cong (F’00) received the B.S. degree in
computer science from Peking University, Beijing,
China, in 1985, and the M.S. and Ph.D. degrees in
computer science from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA, in 1987
and 1990, respectively.

He is currently a Chancellors Professor with the
Computer Science Department and the Electrical
Engineering Department, University of California at
Los Angeles, Los Angeles, CA, USA.

Dr. Cong was elected as an ACM Fellow in 2008
and the National Academy of Engineering in 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

