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Abstract—Driven by the increasingly serious air pollution
problem, the monitoring of air quality has gained much attention
in both theoretical studies and practical implementations. In this
paper, we present the implementation and optimization of our
own air quality sensing system, which provides real-time and fine-
grained air quality map of the monitored area. The objective of
our optimization problem is to minimize the average joint error
of the established real-time air quality map, which involves data
inference for the unmeasured data values. A deep Q-learning
solution has been proposed for the power control problem to
reasonably plan the sensing tasks of the power-limited sensing
devices online. A genetic algorithm has been designed for the
location selection problem to efficiently find the suitable locations
to deploy a limited number of sensing devices. The performance
of the proposed solutions are evaluated by simulations, showing
a significant performance gain when adopting both strategies.

Index Terms—Air quality, power efficiency, reinforcement
learning, genetic algorithm

I. INTRODUCTION

Based on a recent report of the World Health Organiza-
tion [1], air pollution has become one of the greatest threat
to human health. The degree of air pollution is usually
defined according to the concentrations of some typical air
pollutants, including the fine Particulate Matters (e.g., PM2.5)
and other basic chemical substances [2]. To measure the
concentrations of typical air pollutants, the governments have
deployed authoritative monitoring systems across the country
with high costs. Despite the high precision they can achieve,
these systems only have a few number of stations over a large
area and provide measurements with significant latency [3].

However, recent studies show that the concentrations of air
pollutants have the intrinsic characteristics to change from me-
ters to meters, especially in the urban areas with complicated
terrain [4], [5]. It is preferred that a large number of low-cost
Internet-of-Things (IoT) sensing devices are densely deployed
to provide more frequent sensing [6], [7], in which way the air
quality data can have a higher spatial-temporal resolution [8],
[9]. The citizens can benefit from the valuable information
provided by the air quality sensing system [11], by following
the suggestions like keeping away from the highly polluted
area or deciding the best ventilation system for a building [10].

In this paper, we present our own air quality sensing system,
which provides real-time and fine-grained air quality map of
the monitored area. This system has been deployed in Peking
University (PKU) for 7 months and we have collected over
100 thousand data values from 30 devices. To guarantee the
accuracy of the real-time and fine-grained air quality map,

we study the corresponding optimization problem, where the
limited number of available sensing devices and the limited
capacity of their batteries are the constraints. Since related
works rarely address such issues, in this paper, the optimiza-
tion problem is studied in detail.

Specifically, a battery-powered sensing device can only
perform limited times of power-consuming actions, such as
detecting air pollutants, or uploading data to the server. To
recover a real-time and fine-grained air quality map from the
sparse data, a procedure of inference and estimation is re-
quired [12], [13]. The accuracy of inferring the data at unmea-
sured locations and unmeasured times depends on the spatial-
temporal structure of the collected data. For instance, inferring
the current air quality based on a measured value from long
ago would be questionable [14]. In addition, inferring the air
quality at a certain location based on the data from a hardly
correlated location is also inaccurate [15], [16]. Therefore,
it is necessary to consider the problems of where to deploy
the limited number of sensing devices (location selection) and
when to perform sensing actions (power control).

In our work, we model the measurement error and the
inference error based on the data collected by our own system.
Our objective is to minimize the joint error of the real-time and
fine-grained air quality map, by properly designing the power
control and location selection strategies. The power control
problem is solved based on deep Q-learning by considering
the system as a Markov Decision Process (MDP). The location
selection problem is solved by using k-means clustering for
initialization and using the genetic algorithm for improvement.
Both solutions achieve satisfactory suboptimal outcomes, and
the combination of them shows a significant superiority to
reduce the average joint error.

The main contributions of our work are listed as below:
1) We present our real-time and fine-grained IoT air quality

sensing system that has been deployed for 7 months.
2) We provide a deep Q-learning solution for the power

control problem to plan the sensing tasks online.
3) We design a genetic algorithm for the location selection

problem to efficiently deploy the sensing devices.
The rest of our paper is organized as follows. Section II

provides an overview of our system. Section III formulates the
problem of minimizing the joint error. Section IV presents the
deep Q-learning solution for power control. Section V presents
the genetic solution for location selection. Section VI shows
the simulation results of the proposed solutions. Finally, we
conclude our paper in Section VII.
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II. SYSTEM OVERVIEW

As shown in Fig. 1, our air quality sensing system consists
of four layers [17]. The sensing layer collects the data of real-
time air quality, which is carried out by the sensing devices
installed near the ground. The transmission layer enables
the bidirectional communications, which is supported by the
infrastructure of the current wireless communication networks.
The processing layer is implemented in the cloud server, which
is responsible to receive, record and process the data from the
sensing layer, and to control the behaviour of the sensing layer.
The presentation layer can provide valuable information for
the users, which includes our official website and our official
WeChat subscription account.
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Fig. 1. An overview of our air quality sensing system deployed in PKU.

This system has been deployed in PKU since Feb. 2018.
During the deployment, we have collected over 100 thousand
effective values, mostly for the concentrations of PM2.5. Here
we provide the data set collected by 30 on-ground sensing
devices [19]. Specifically, it contains the PM2.5 values from
two time periods, including the period from March 1st 2018
to May 15th 2018, and the period from June 5th 2018 to
Augest 25th 2018. The provided data set is used to extract
some important statistical properties of the monitored area, as
given in Section III, in which way we are able to design the
corresponding power control and location selection strategies.

III. OPTIMIZATION PROBLEM FORMULATION

A. Problem Overview

The set of all suitable sensing locations in the concerned
area is given by K, with |K| = K. Only L<K sensing devices
are available to be deployed. We denote the set of locations
with sensing devices as KL, where KL∈K and |KL|=L.

The system is divided into equal-length time slots. We
provide the 0-1 matrix ΦK×T to represent the power control
strategy, where T is the expected number of time slots that
the whole system should sustain without recharging. As the

element of the matrix Φk×t, φk,t=1 indicates that the device
in the kth location is turned on to sense data at the tth time
slot, and φk,t=0 indicates that this device still keeps asleep.
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Fig. 2. The spatial-temporal model of the air quality sensing system which
contains spatial and temporal inference to provide real-time air quality map.

B. Measurement and Inference Errors

We model the measurement error and inference error based
on our statistical data [19]. The inference error here is modeled
independently of any advanced inference algorithms (such as
neural networks), in which way we can depict the most general
situation. We denote the air quality at the kth location at the
tth time slot as a random variable, given by Xk,t.

Measurement: The measurements of the sensing devices
are not perfect. The distribution of the measured value (e.g.,
PM2.5) approximately complies to Gaussian distribution:

Xk,t ∼ N (µk,t, σ
2
k,t),

µk,t ≈ µt,
σ2
k,t ≈ µk,t×σ2

0 ,
∀t ≥ 0, ∀k∈K, φk,t=1, (1)

where µk,t is the precise value1, µt is the average value at
time t, and σ0 is a constant reflecting the error of the sensors.
We can see that the precision of the measurement decreases
as the air quality is getting bad (σ2

k,t is larger as µt is larger).
Temporal inference: With a measured value Xk,t, we

can infer the value at time t + τ for the same location.
The deviation of the new value from the original one can
be seem as a additive random noise. For any two adjacent
time slots, such a noise has a fixed distribution, given as
Xt→t+1
d ∼N (0, σ2

d),∀t≥0, where σ2
d is the constant showing

the average change rate of the air quality. The distribution of
Xk,t+τ =Xk,t+X

t→t+1
d +· · ·+Xt+τ−1→t+τ

d is given by{
Xk,t+τ ∼ N (µk,t, σ

2
k,t+τ ),

σ2
k,t+τ = σ2

k,t + τσ2
d,

∀t≥0, ∀k ∈ K, φk,t=1, (2)

implying a longer time span decreases the inference accuracy.
Spacial inference by single source: Based on Xk,t, we

are able to infer the value at another location at the same
time slot, Xk′,t. To achieve this, we exploit the relevance
among different locations from historical data and find that
the deviations between two locations can also be modeled as
additive. Specifically, the additive deviation from location k to
location k′ is denoted as Xk→k′

d ∼ N (µk,k′,t, σ
2
k,k′,t), where

µk,k′,t ≈ µt×µk,k′ and σ2
k,k′,t ≈ µt×σ2

k,k′ . Here, µk,k′ is the

1The precise PM2.5 value can be detected by a high-precision instrument
TSI8530, which is expensive and not economical to be massively deployed.



normalized average deviation from location k to location k′,
and σk,k′ is the normalized increased variance when using
Xk,t to infer Xk′,t. Now we have the distribution of the
inferred value Xk′,t=Xk,t+X

k→k′
d as:

Xk′,t ∼ N (µk′,t, σ
2
k′,t),

µk′,t = µk,t + µk,k′,t,
σ2
k′,t = σ2

k,t + σ2
k,k′,t,

∀t ≥ 0,∀k, k′ ∈ K. (3)

Spacial inference by multiple sources: We can further
combine the results of single-source spatial inferences from
M locations to jointly infer a value of a specific location. We
denote the mth single-source spatial inference for the target
location k as Xk,t,m ∼ N (µk,t,m, σ

2
k,t,m), 1 ≤ m ≤ M . By

multiplying the probability density functions (PDF) of these
inference results together, we obtain the PDF of the target
location k. For simplicity, we assume the distributions of
different Xk,t,m are independent. Therefore the final inference
Xk,t also has a Gaussian distribution, given as:

Xk,t ∼ N (µk,t, σ
2
k,t),

µk,t =

∑M
m=1 µk,t,m/σ

2
k,t,m∑M

m=1 1/σ2
k,t,m

,

σ2
k,t = 1

/(∑M
m=1 1/σ2

k,t,m

)
,

∀t≥0, ∀k′∈K. (4)

The result has a weighted mean and has a smaller variance.
Rule of inference: As shown in Fig. 2, for a measured

value, no inference is performed. For an unmeasured location
at current time, we consider a three-step inference. The first
step is to execute temporal inference for each one of the
selected locations based on their previous measured values by
Eqn. (2), in which way we have L values for the current time.
The second step is to utilize these values to perform L times
of single-source spatial inference for the target location, based
on Eqn. (3). And the final step is to obtain the multi-source
spatial inference result, based on Eqn. (4).

C. Environment Model

The value of µt can be seen as the air quality for the whole
area in a coarse-grained perspective. And we aim to establish
a statistic model for the change of µt. From our collected
data, we can obtain the the probability of air quality transition
between adjacent time slots, denoted by

Py,y′ = P
[
µt=y′

∣∣µt−1 =y
]
, t ∈ [1, T ], y, y′ ∈ Y, (5)

where Y is the value space of the possible air quality. The
values of air quality (such as PM2.5) are usually in the form
of integer, thus we consider Y as a finite discrete value space.

It is assumed that µt can be roughly known when it comes
to the tth time slot. The corresponding approaches could be
neural networks [13], or checking the official weather report
(which is not our focus in this paper). We focus on how to
increase the accuracy of the fine-grained air quality map by
power control and location selection, given as follows.

D. Problem of Power Control and Location Selection

We assume that each sensing device can only perform E
times of sensing tasks before its battery dies, where E<T . In
addition, we expect that each device should not be silent for

too long. The maximum number of consecutive time slots that
a device can keep asleep is S. We guarantee that S·E > T to
avoid contradiction.

Since the server needs to provide a real-time distribution of
the air quality, the incomplete data at the unmeasured locations
at the current time should be estimated according to the
spatial and the temporal inference mentioned in Section III-B.
For Xk,t, we define its joint error, Jk,t, as the indicator to
quantitatively show reliability of the data, given as

Jk,t =
√
σ2
k,t + (µk,t − µt)2, (6)

which jointly considers the variance of the value and the
deviation from the average value. A larger variance or a larger
deviation could reduce the reliability of the data.

Our objective is to minimize the average joint error of the
real-time air quality map, given by

min
KL

min
{φk,t}

J̄ = T−1K−1
T∑
t=1

∑
k∈K

Jk,t, (7)

s.t.
∑T

t=0
φk,t ≤ E, ∀k ∈ KL, (8)∑t+S+1

t
φk,t ≥ 1, ∀k∈KL,∀t∈ [0, T−S−1], (9)

φk,t = 0, 1 ∀k ∈ KL,∀t ∈ [0, T ], (10)
φk,t = 0, ∀k /∈ KL,∀t ∈ [0, T ], (11)
|KL| = L, |KL| ∈ K, (12)

where we assume all the sensors should perform sensing at
t=0 for a good initialization and the situation at t=0 is not
counted. Eqn. (8) implies the power budget constraint, Eqn. (9)
indicates the maximum silence time span, and Eqn. (12) shows
the constraints of location selection.

The joint optimization of power control and location selec-
tion is highly intractable. Therefore, in the following part of
this paper, we separate the problem into the power control
problem and the location selection problem. Specifically, we
first study the problem of power control in a stochastic
environment based on a fixed location selection in Section IV.
Next, in Section V, we study the problem of location selection
based on a fixed power control strategy in a given environment.
By combining the solutions of these problems together, it is
expected that a satisfactory outcome can be acquired.

IV. POWER CONTROL STRATEGY

The power control problem can be transformed into a
Markov Decision Process (MDP), which consists of the set
of states S, the set of available actions A, the state transition
probability matrix P , and the set of reward functions R.

Definition 1. In the power control problem with L sensing
devices, the ith system state in the whole state transition
history is defined in the following form:

Si = (Sti ,
~Spi ,

~Sdi ,
~Sri , S

e
i , S

l
i), (13)

which has six components. The integer Sti ∈ [0, T+1] represents
the time of the system. The L-length integer vector ~Spi indicates
the remaining power of each sensing device, with ~Spi (l) ∈



[0, E], ∀1≤ l≤L. The L-length integer vector ~Sdi shows the
number of time slots since the last time of measurement for
each device, with ~Sdi (l) ∈ [0, S], ∀1 ≤ l ≤ L. The L-length
integer vector ~Sri records the average air quality value during
the last time of measurement for each device, ~Sri (l)∈Y , ∀1≤
l≤L. The integer Sei ∈Y shows the current average air quality
µt. And the integer Sli∈ [1, L] implies who’s turn it is to take
the action at this state2.

Initial state: The initial state is S1 = (1, ~Sp1 ,
~Sd1 ,

~Sr1 , µ1, 1),
where ~Sp1 (l) = E, ~Sd1 (l) = 1, ~Sr1(l) = µ0, ∀1 ≤ l ≤ L.

Action set: For each state Si = (Sti ,
~Spi ,

~Sdi ,
~Sri , S

e
i , S

l
i),

two actions can be performed, given by A = {a0, a1},
where a0 represents keeping the (Sli)

th device asleep and a1
represents turning the (Sli)

th device on. If Spi (Sli) > 0 and
Sdi (Sli) = S, meaning that the (Sli)

th device has been asleep
long enough and still have power, then only action a1 can be
executed. If Spi = 0, meaning that the (Sli)

th device has no
power, then only a0 can be executed. For other cases, both a0
and a1 can be chosen for the (Sli)

th device.
State transition for Sli < L: For the current state Si =

(Sti ,
~Spi ,

~Sdi ,
~Sri , S

e
i , S

l
i), if a0 is performed, then for the next

state Si+1, we have Sli+1 = Sli + 1 and the other components
the same as Si. If a1 is performed, then for the next state Si+1,
we have Sli+1 = Sli + 1, Spi+1(Sli) = Spi (Sli)− 1, Sdi+1(Sli) = 0,
Sri+1(Sli) = Sei , and other components the same as Si.

State transition for Sli = L: Fort the current state Si =

(Sti ,
~Spi ,

~Sdi ,
~Sri , S

e
i , S

l
i), if a0 is performed, then Sti+1 =Sti +1,

Sli+1 = 1, ~Sdi+1 = ~Sdi +1, Sei+1 ∼ P [µt
∣∣µt−1 = Sei ], and the

other components the same as Si. If a1 is performed, then
Sti+1 = Sti +1, Sli+1 = 1, Spi+1(L) = Spi (L)−1, Sri+1(L) = Sei ,
Sdi+1(l) = Sdi (l) + 1 for 1≤ l≤ L − 1, Sdi+1(L) = 1, Set+1 ∼
P [µt

∣∣µt−1 =Sei ], and the other components the same as Si.
Termination condition: When it comes to Sti = T + 1, the

state transition terminates and no more actions are needed.
Reward: For each state s, there is a reward when taking an

action a, denoted as Ras . Specifically, for the state with Sli=1,
the reward is defined as −

∑
k∈K Jk,t after the 1th device takes

its action. For the state with Sli > 1, the reward is defined as
the marginal decrease of

∑
k∈K Jk,t after the corresponding

device takes its action. The sum of L rewards with a certain
time slot t equals to the final value of −

∑
k∈K Jk,t after all

the L devices take their actions.
State value function: For each state, there is a value func-

tion V (S), representing the utility of this state. Specifically,
the termination state has zero utility. For each intermediate
state, if s→ s′ with action a and reward Ras , then we have
V (s) = Ras + V (s′). For the initial state, S1, the state value
function is V (S1)=

∑
iR

a
Si

=−
∑T
t=1

∑
k∈K Jk,t. We can see

that, maximizing the value of V (S1) by properly selecting the
action for each state is the same as minimizing the average
joint error J̄ as the objective function describes.

2We arrange the sensing devices to take actions in a predefined order at
each time slot. This will not influence the potential optimal result as long as
the reward is correctly defined.

State-action value function: The value of performing
action a on state s is denoted as Q(s, a). By further taking
into account “take the best action for each state”, we have

V (s) = max
a

[
Q(s, a)

]
, (14)

Q(s, a) = Ras +
∑

s′
Pass′V (s′), (15)

where the state transition probability is also considered.
Approximation of Q(s, a): Although there exists an optimal

solution to calculate the best solution, the computation com-
plexity increases exponentially with the number of devices L.
We use a deep neural network (NN) to approximate Q(s, a)
and we denote the approximated Q(s, a) as Q̃(s, a). This
neural network uses the feature vector ~f(s, a) of a state-action
pair as the input and calculates the corresponding Q̃(s, a). We
denote the neural network model as Q̃(s, a) = NN

(
~f(s, a)

)
.

Feature design: A feature vector has multiple real number
components, showing some properties of a given state-action
pair. In our implementation, the length of the feature vector is
5L+K+3, where K is the number of all the locations. Due
to space limit, details are omitted in this paper and they can
be found in our journal paper [18].

Training of the NN: We first use a random power control
strategy to experience through the state transition procedure.
In this way, a set of

〈
~f(s, a), Q(s, a)

〉
values can be col-

lected. Then we perform a training process to minimize∑[
NN

(
~f(s, a)

)
−Q(s, a)

]2
and get the initial training NN

model. Next, we use theNN model to perform action decision
in a new system, with probability ε to select a random action
and with 0< 1−ε < 1 to select action a= arg max Q̃(s, a).
In this way, we can collect a new episode of the experience
and record the tuples of < ~f(s, a), Ras , Q̃(s′, a′) > along
the experienced states. The recorded tuples also form a new
training set

{〈
~f(s, a), Ras+Q̃(s′, a′)

〉}
. We can repeatedly use

the NN to perform action decision in new systems and create
multiple sets of training data, just like the way in [20]. As the
training goes on, the accuracy of Q̃(s′, a′) improves and the
adopted action for each state, i.e., π(s) = arg maxa Q̃(s, a),
can also lead to a lower average joint error J̄ .

V. LOCATION SELECTION STRATEGY

The problem of location selection is solved by first using a
clustering algorithm to select initial locations and then using
a genetic algorithm to iteratively improve the performance.
Here, we utilize µk1,k2 and σ2

k1,k2
to quantitatively describe

the statistic relation of the locations k1 and k2. A higher value
of |µk1,k2 | or a higher value of σ2

k1,k2
indicates that the air

quality at k1 and the air quality at k2 have lower similarity.
High dimensional feature space: For any two locations,

k1, k2 ∈ K, we defined θk1,k2 as their distance, given by

θk1,k2 =
√
µ2
k1,k2

+ σ2
k1,k2

, k1, k2 ∈ K. (16)

A greater distance indicates less similarity3. We need to
decide the coordinate of each location k ∈ K, denoted by

3Note that to avoid the case like θ1,3 > θ1,2+θ2,3 (which is not acceptable
in Euclidean space), we can add a same small amount value δ = θ1,3−θ1,2−
θ2,3 to all the values of θk1,k2

, ∀k1 6= k2.



~xk = (x
(1)
k , x

(2)
k , · · · , x(D)

k ), where D is the dimension of the
feature space, which is set to be D=K−1. The coordinate of
the first location is set as ~x1 = (0, 0, · · · , 0). The coordinate
of the second location is ~x2 = (θ1,2, 0, · · · , 0). For the kth

coordinate ~xk, we need to calculate the solution of a (k−1)-
variable quadratic equation set, where the distances from ~xk
to all the previous coordinates are the conditions.

Clustering and initial sets: The L locations that we
aim to select from K should be “as separated as possible”.
Therefore, we use the classical k-means algorithm to cluster
the K locations in the feature space into L clusters. We then
randomly choose one location from each cluster to create a
location set set L, with |L| = L. Since there could be many
possible L, we denote the collection of the location sets as{

C =
{
Lc,
}
, ∀c = 1, 2, · · ·C,

Lc =
{
kl
}
, ∀kl ∈ K ,∀l = 1, 2, · · ·L. (17)

Therefore, C becomes the initial sets of the location selection.
Genetic coding: For each location set L, we use a K-length

vector to indicate the corresponding coded gene, given by
~G(L) =

(
G(1)(L), G(2)(L), · · · , G(K)(L)

)
, (18)

where G(k)(L) is a boolean function, indicating whether the
kth location is included in the location set L. For each valid
location set (i.e., up to L selected locations), the number of
“1”s in its coded gene is no more than L. For the initial
collection of location sets C, we encode them and add their
genes to a gene pool, denoted by G.

Genetic mutation: Each gene creates M copies of itself,
where each bit of the gene has a fixed possibility pm to mutate
during replication (0→1, or 1→0). Therefore, different genes
(solutions) are generated and added to the gene pool G. Note
that the number of 1 may not satisfy the constraint, which will
be considered in the following genetic selection part.

Genetic recombination: For any two of the existing genes
~G1 and ~G2, we randomly choose a position g = 1, 2, · · ·K−1
and exchange the bits of these two genes behind the position g.
The new genes are ~G′1 =

(
G

(1)
1 , · · · , G(g)

1 , G
(g+1)
2 , · · · , G(K)

2

)
and ~G′2 =

(
G

(1)
2 , · · · , G(g)

2 , G
(g+1)
1 , · · · , G(K)

1

)
. These new

genes are also added into the gene pool G.
Genetic selection: First, the duplicated genes and the genes

with more than L “1”s are eliminated. Then, we check the
disadvantage of each existing gene, which is defined as J̄
of the corresponding location set based on the given power
control and environment. According to the disadvantage of
each existing gene, we keep the best H1 ones in the gene
pool, and then randomly choose H2 genes according to each
gene’s weighted probability. Such probability is defined as

pg ∝
[(

max
g

J̄
)
− J̄g

]
, ∀g ∈ G. (19)

Therefore, the gene pool only keeps H=H1 +H2 genes after
each round of genetic selection.

Evolution and termination: For each round of genetic
evolution, we first perform the genetic mutation for each
existing gene and the genetic recombination for all the gene
pairs. We then perform genetic selection to keep only H

genes and record the lowest disadvantage value. If the best
performance hasn’t been improved for 6 rounds, the evolution
process terminates. Otherwise, we repeat the above process.

VI. EMULATION

The parameters σ0, σd, {µk,k′} and {σ2
k,k′} are extracted

from our collected data, which is based on 30 air quality sens-
ing devices deployed in Peking University for 7 months [19].
A detailed calculation of these parameters are provided in our
journal paper [18]. The sensing interval (the length of the
time slot) is 10 minutes, and each collected data is an integer
representing the detected PM2.5 value at the given location and
time. The deep neural network is designed to have 5 hidden
layers. Given the location number K and device number L,
each hidden layer is designed to have 4K+L, 4K, 3K, 2K,
and K neurons, respectively (from the input side to the output
side). A more detailed parameter setting is listed in Table I.

TABLE I
SIMULATION PARAMETERS

Normalized measurement variance, σ2
0 0.1734

temporal deviation variance, σ2
d 14.44

Normalized mean relation, {µk,k′ |k 6=k′} between −0.15 and 0.15

Normalized variance relation, {σ2
k,k′ |k 6=k′} between 0.12 and 0.38

Air quality values, {µt} between 1 and 508

Total number of time slots, T between 500 and 10000

Total number of locations, K 30

Number of available devices, L between 5 and 25

Energy budget of each device, E between 100 and 1000

Maximum allowable sleep time slots, S between 10 and 12

Random action probability, ε 0.1

Size of gene pool, H between 40 and 100

Two types of genetic selection, H1 and H2, 0.1H and 0.9H

Copy number during genetic mutation, M 3

Mutation probability for each bit, pm 0.1
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Fig. 3. The performance power control. (a) shows performance improvement
during the training procedure. (b) shows the influence of the energy budget
and the number of available devices.

Power control: Fig. 3 provides the performance of the
proposed power control strategy based on Q-learning. Subplot
(a) shows the performance improvement during the iterative
training process, with T = 10000, E = 2000, S = 12,
K = 30 and L = 20. The linear approximation only has
a minor advantage over the random power control scheme,
while the proposed deep Q-learning scheme shows a much
promising performance. Subplot (b) presents the influence of
the number of sensing devices and the energy budget of the
sensing devices, with T = 10000, S = 12, and K = 30. The
number of devices L and the energy budget E both have
negative correlations with the average joint error J̄ .
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(b) Different Location Selection Schemes
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Fig. 4. The performance of location selection. (a) shows the revolution
process with/without initial clustering and different size of gene pool H . (b)
shows the influence of the number of available devices L.

Location selection: In Fig. 4, we present the location
selection strategy based on the proposed genetic algorithm,
with pm=0.1 and M=3. Subplot (a) shows the improvement
of performance during the evolution. It can be seen that
by using the clustering algorithm, the starting point of the
system has a better performance and therefore leads to a
shorter convergence time. In addition, the 100-sized gene
pool has a quicker evolution speed compared with the 40-
sized gene pool, at the cost of a higher memory occupation.
Subplot (b) shows that both clustering and evolution contribute
to the performance. With more devices being deployed, the
performance also gets better.
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Fig. 5. he result of the combination of location selection and power control.

Combination of power control and location selection:
The joint usage of location selection and power control strate-
gies is presented in Fig. 5, with T =10000, S=12, E=2000,
H = 100, and K = 30. The upmost curve that represents the
random location selection and random power control has the
highest average joint error J̄ . For a specific power control
strategy, the evolutionary location selection outperforms the
random location selection. And for a specific location selection
strategy, the deep Q-learning power control outperforms the
random power control. In addition, the evolutionary location
selection has a more obvious gain compared to the deep Q-
learning power control when the value of L is high, which
causes the crossover of the second and the third curve.

VII. CONCLUSION

In this paper, we present the implementation and optimiza-
tion of our real-time fine-grained air quality sensing system.
The proposed power control strategy was based on deep Q-
learning by re-modeling the problem as a MDP. And the
proposed location selection strategy was based on genetic
evolutionary algorithm which widely search the solution space.
To evaluate the proposed solution, we extracted the properties
from our data set based on our own air quality sensing system

deployed in Peking University. The simulation result showed
that the proposed power control strategy provided a satisfying
performance after learning 200 episodes. And the proposed
location selection could quickly achieve a suboptimal solution
only by using a small gene pool with the size of 100.
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