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Abstract
Data insertion and deletion are common operations exist

in various applications. However, traditional memory archi-
tecture can only perform an indirect insertion/deletion with
multiple data read and write operations, which is signifi-
cantly time and energy consuming. To mitigate this problem,
we propose to leverage the unique capability of emerging
skyrmion racetrack memory technology that it can naturally
support direct insertion/deletion operations inside a race-
track. In this work, we first present a circuit level model
for skyrmion racetrack memory. Then, we further propose a
novel memory architecture to enable an efficient large size
data insertion/deletion. With the help of the model and
the architecture, we study several potential applications to
leverage the insertion and deletion operations. Experimental
results demonstrate that the efficiency of these operations
can be substantially improved.

1 Introduction
Data insertion and deletion are common operations that

can be employed in various levels of a computer system. Ob-
viously, these operations are critical for those data structures
(e.g., binary search tree), algorithms (e.g., insertion sort),
and applications (e.g., databases), which want to maintain
data in order. In addition, these operations can be lever-
aged to improve memory utilization in scenarios such as
data allocation and garbage collections. Unfortunately, the
memory architecture of a modern computer system is based
on traditional random access memory technologies, such as
SRAM and DRAM, which only support basic read and write
operations to data stored in an array-like structure. Thus, an
insertion or deletion operation is indirectly achieved using a
lot of data read and write operations that induce intensive
data movements. To this end, data management efficiency
can be significantly improved if direct insertion and deletion
operations are enabled.

The emerging skyrmion racetrack memory technology is a
promising candidate to enable such attractive direct insertion
and deletion operations in the future memory architecture
design [27]. Skyrmion racetrack memory is a new genera-
tion of racetrack memory technology. It leverages magnetic
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skyrmions, which are particle-like spin textures moving along
nanotrack driven by spin-polarized current, to store informa-
tion. It has inherited advantages from the prior generation
of domain-wall (DW) racetrack memory, which include high
storage density and fast read/write speed [15]. Moreover,
compared to traditional DW racetrack memory, skyrmion
racetrack memory is more stable and requires less energy [8].
More importantly, it enables a direct data insertion/deletion
operation by injecting/evicting magnetic skyrmions to/from
the nanotrack [27].

Recently, traditional DW racetrack memory have been
extensively studied as potential technology for on-chip cache
architecture[20, 22], GPGPU register file[12], main memory,
and even storage-class-memory[14]. However, there still lacks
circuit level modeling and architecture level research on the
new generation skyrmion racetrack memory technology. Es-
pecially, the attractive capability of enabling insertion and
deletion operations are not exploited yet. To this end, we first
provide a cross-layer modeling, design, and exploration to
leverage this unique capability of skyrmion racetrack memory
technology. Contributions of this work can be summarized
as follows.

∙ We extend a traditional DW racetrack memory model
to make it support skyrmion racetrack memory array,
and the design space is explored considering different
design parameters.

∙ We propose a novel memory architecture to enable an
efficient large size data insertion, which can overcome
the limitation constrained by the racetrack length.

∙ We study several potential applications, including cache
tag and sorting algorithm, to leverage direct inser-
tion/deletion operations enabled by skyrmion racetrack
memory.

∙ We provide comprehensive experimental results to
quantitatively evaluate the benefits of using skyrmion
racetrack memory in different applications.

The rest of this work is organized as follows. In Section 2,
we review the background of skyrmion racetrack memory tech-
nology. Circuit-level modeling of skyrmion racetrack memory
is introduced in Section 3. We propose a relay architecture to
support large data insertion/deletion in Section 4. Two po-
tential applications are evaluated in Section 5 as case studies
to leverage direct insertion/deletion, followed by a conclusion
in the last section.
2 Preliminary

In this section, we review the basics of skyrmion racetrack
memory technology. Related modeling work about prior gen-
eration DW racetrack memory technology is also introduced.
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2.1 Basics of Skyrmion Racetrack Memory
Magnetic skyrmions are swirling topological configurations,

which are mostly induced by chiral interactions between
atomic spins in non-centrosymmetric magnetic bulks or in
thin films with broken inversion symmetry. Owing to their
intrinsic properties in nanoscale size, extremely low depin-
ning current densities, high motion velocity and topological
nontrivial feature [5, 8], they hold promise as information
carriers in future ultra-dense, low-power memory, and logic
devices. Furthermore, the standby energy consumption and
heat generation during the processing and transportation of
information can be efficiently reduced thanks to the merit of
non-volatility. To date, advances have been made in the iden-
tification [7], creation/annihilation [11, 16], motion [11] of
skyrmions at room temperature, which are the prerequisites
to employ skyrmions in practical applications.

One of the most potential applications of skyrmions is to
build racetrack memory [15]. Similar to the DW racetrack
memory, skyrmion-based racetrack memory store data infor-
mation by a sequence of skyrmion. It is expected to achieve
higher package density and lower power consumption in com-
parison with those of DW racetrack memory because of the
smaller size and lower depinning current density [16]. More
importantly, by exploiting the unique properties of skyrmions,
such as topological stability and particle-like behavior, it en-
ables the new functionality of insertion and deletion [2, 27].

As shown in Figure 1a and 1b, a new skyrmion can be
generated at the access port and then inserted into the race-
track with the help of injection current. All skyrmions on the
right side of the access port are shifted one slot to the right.
This is an illustration of data insertion for skyrmion race-
track memory. The deletion is an inverse process, in which
a skyrmion is evicted followed by a partial shift. Obviously,
the insertion and deletion “direction” can be controlled by
the direction of injection current.
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(a) Generate a skyrmion
Injection Current

Shift Current
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(b) Insert: partial shift to right
Moving
Direction

Shift
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Figure 1: Illustration of Skyrmion Insertion and Deletion

2.2 DW Racetrack Memory Modeling
Prior work has provided detailed circuit level model [25] for

domain wall racetrack memory based on a popular emerging
memory modeling framework, NVSim [4]. NVSim is widely
used to perform system-level exploration of emerging memory
before real chip fabrication. Device level parameters, includ-
ing cell layout, latency, energy, etc., are fed into NVSim
framework. Then, it optimizes the NVM circuit designs, and
evaluates the area, performance, and energy under given
design constraints.

Compared to other emerging memory technologies (e.g.
STT-RAM and PCM), one unique feature of racetrack mem-
ory is its tape-like cell shape, which make the circuit-level lay-
out more complicated. To mitigate this problem, Macro Unit

Track

Access MOS

Shift MOS

MTJ

Figure 2: Top-view of a Macro Unit.

is proposed as the basic building block of DW racetrack mem-
ory in prior work [25]. A Macro Unit is normally composed of
multiple cells of racetrack memory. The these tape-like cells
are carefully organized inside a macro unit to optimize area
efficiency. There are several important configuration param-
eters related to a macro unit and corresponding racetrack
memory cell size. These parameters include cell numbers,
port numbers, width/length of a racetrack, width/length of
the access transistors, etc. In the next section, we will review
these concepts with our detailed circuit-level modeling for
skyrmion racetrack memory.

3 Circuit Design and Modeling
In this section, we first provide the macro unit design for

skyrmion racetrack memory. Then, we introduce modeling
for read, write, shift, and insertion/deletion operations. After
that, a brief design space exploration is presented.
3.1 Macro Unit Design

A schematic top-view of one skyrmion racetrack Macro
Unit is shown in Figure 2. It contains two skyrmion race-
track memory cells. Each cell has four access ports. Several
important parameters and typical values of a macro unit are
listed in Table 1. Unit F is the technology feature size. Using
a specific skyrmion racetrack cell, the layout of a macro unit
is determined by following design parameters: (1)𝐿𝑡𝑟, the
effective storage length of a track, equal to bit numbers in
a track, (2)𝑃 𝑁 , the number of access ports on a track, and
(3)𝑂𝐷, overlapping degree, the number of parallel tracks that
can be overlapped.

Parameter Description Typical Value
Process Dependent Parameters

𝑊𝑡𝑟 Width of track 1𝐹
𝑇𝑡𝑟 Thickness of track 0.4𝑛𝑚

𝑊𝑀𝑂𝑆 Gate width of MOS 4𝐹

𝐿𝑀𝑂𝑆 Length of MOS 10𝐹
𝐺𝑀𝑂𝑆 Minimum gap distance

between MOSFETs
1𝐹

𝜌 Resistivity of track 2.1𝜇Ω · 𝑚

𝑗𝑑𝑒𝑝𝑖𝑛 Depinning current 0.7𝑀𝐴 · 𝑐𝑚−2

Design Parameters
𝐿𝑡𝑟 Length of track 16𝐹 - 2048𝐹

𝑃 𝑁 Port number depends on 𝐿𝑡𝑟

𝑂𝐷 Overlapping degree depends on 𝐿𝑡𝑟, 𝑃 𝑁

Table 1: Macro Unit Parameters
Prior research has addressed that the major performance

challenge of racetrack-like devices is its high latency of a
shift operation [19, 21–26] to align data with access ports
before read/write. In addition, extra overhead region reduces
effective storage density. One method to alleviate both prob-
lems is to use multiple access ports, dividing the track into
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Figure 3: (a) Shifting speed and (b) skyrmion generating latency vs
inject current density.

different sub-tracks. However, adding more ports may induce
area overhead for access transistors. This is exploited in sub-
section 3.2. Having the basic macro unit, the data operations
are modeled in the next subsection.
3.2 Data Access Operation Modeling

Read and Write Operations. These two operations are mod-
eled similar to prior work [25], which are treated like STT-
RAM operations. Read is performed via access port by mea-
suring the magnetoresistance of the MTJ. Write is performed
by activating a high write current pulse through MTJ, to
change the magnetization direction of a skyrmion in the
racetrack.

Shift Operations. Skyrmion motion along a nanotrack can
be achieved by an electrical current through either the spin
transfer torque (STT) or spin Hall effect (SHE) [5]. In this
paper, we employ the case of utilizing the STT effect, the spin-
polarized current is injected in-plane along the nanotrack.
The skyrmion motion velocity can be calculated with the
following equation,

𝑣 =
𝛽

𝛼
𝑣𝑠 = − 𝛽

𝛼

𝑝𝑎3

2𝑒𝑀𝑠
𝐽𝑆𝑇 𝑇 (1)

where 𝑣𝑠 is the velocity of the conduction electrons, which
can be identified as the driving current density 𝐽𝑆𝑇 𝑇 with
a factor of 𝑝𝑎3/2𝑒𝑀𝑆 . Here, p is the spin polarization of
the electrical current, and e is the elementary charge. 𝛽
is the coefficient of the nonadiabatic torque for the STT
effect. 𝑀𝑆 is the saturation magnetization. Typical values of
these parameters can be found in related literature [2, 8, 27].
Figure 3a illustrates the relationship between shift speed and
current density. Skyrmion moves faster under larger driven
current density.

Insertion Operations. Each insertion can be decomposed
of 2 stages: (1) generating one skyrmion at the injection side
of the access port and (2) applying a driven current at the
access port and corresponding end point of track to shift the
inserted bit. Skyrmion creation via an electrical current or
field is the most commonly studied method [5]. The proce-
dure is considered as utilizing an electrical current to inject
into a thin film [2, 8, 27]. Similar to prior work, we utilize
micromagnetic simulation tool to simulate the skyrmion gen-
eration process. The latency of generating skyrmion under
different current density is shown in Figure 3b. From the
figure, we can tell that the shift operation is dominating in
an insertion operation. Note that the driving current density
is higher in such a partial shift for insertion, compared to
that of shifting from one end of the racetrack. We can use
Eq. 1 to calculate latency. Note that deletion is the inverse

process of the insertion and the results are not shown due to
page limit.

3.3 Design Space Exploration
Having the circuit model, we perform a brief design space

exploration to demonstrate the effect of two cortical parame-
ters, 𝐿𝑡𝑟 and 𝑃 𝑁 , on latency, energy, and density. We assume
the highest overlapping degree is used by default. A fixed
power supply voltage is provided and the current density
is higher than the depinning current for each configuration.
The memory size is set as 8MB.

As shown in Figure 4a, shorter tracks with more ports
have lower access latency, thanks to higher driving current
density and lower moving distance. While Figure 4b indi-
cates that devices with more ports consume less energy due
to shorter data movement. With regard to storage density,
increasing PN may improve it at first by shrinking the size
of the overhead region. However, this benefit diminishes with
PN and the maximum OD available drops quickly. Thus,
the storage density will drop quickly when PN exceeds a
certain value. Longer tracks mean fewer macro units in an
array, reducing area and power consumption of peripheral
circuits. We plotted Pareto optimal points of our design in
Figure 4d. The brightness of data points indicates average
energy consumption. As shown in Figure 4d, with moderate
latency requirements, our design can achieve considerable
storage density and fairly high energy efficiency.

4 Relay Architecture for Large Data Insertion
Due to the depinning current density requirement, the

length of a single racetrack is limited (normally less than
2048, as shown in Table 1). Thus, if the insertion region
(memory region to be inserted) is larger than the track size,
data will be shift out from one end of the racetrack and get
lost. To overcome this problem, we propose a novel relay
architecture to enable a larger insertion range. The basic
idea is to read out the data before its being shifted out at
the end of a racetrack. Then, the data is inserted into a
neighbor racetrack. The pivot is to identify the location of
this neighbour racetrack to support such a cross racetrack
insertion.

An example is shown in Figure 6. As addressed before,
a macro unit (MU) is the basic building block of skyrmion
racetrack memory. All racetracks inside a macro unit are
shifted or inserted/deleted together. To support cross macro
unit data insertion, we add a sets of transmission gates
between two adjacent macro units to mitigate data from one
macro unit to the other. The detailed design is shown in
Figure 5 (top). One extra access port is added at each end of
a racetrack. As shown in the figure, the access port at right
end of a racetrack in macro unit 3 is connected with the left
end access end of a corresponding racetrack in macro unit
4. With the help of these extra ports, we can read out the
data before its being shifted out from the end and write it
to the neighbour racetrack. The next issue is to manipulate
the transmission gates so that a proper insertion range is
controlled.
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Figure 4: Design space exploration.
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Assume that we want to group MU2-MU5 together to
increase the insertion range by four times. This is a common
case that a continuous region of memory is allocated to the
user to support large size insertion. To achieve this, the trans-
mission gates among these macro units are enabled with a
control signal called 𝐺𝐿, as shown in Figure 6. To achieve
an efficient signal control, we provide a Hilbert-curve organi-
zation, as shown in Figure 5 (bottom). The index (address)
of each macro unit is shown in the figure. A Hilbert curve is
a continuous fractal space-filling curve. Given a 2D 2𝑘 × 2𝑘

grid array, a Hilbert curve can be constructed by dividing
the array into quad sub-arrays, recursively. Sub-arrays are
linked in a U-shape topology. A 2𝑘 × 2𝑘+1 grid array can be
implemented by connecting 2 square arrays back to back.

After using the relay architecture, we can enable large
insertion region across multiple macro units. The extra design
overhead is moderate with extra transfer gates and one extra
control line for GL. The energy consumption overhead is
discussed as follows. If we involve N continuous macro units in
the insertion, we will induce N extra reads and N extra writes

of inserted data. In addition, the shift length is approximately
increased by N times. A back-of-the-envelope calculation
estimation is that the energy consumption is increased by
approximately N times. This is reasonable as the process is
equal to insert data into an N times length racetrack. The
timing overhead can be hidden using a pipelining style, as
long as these macro units can be shifted in parallel under the
power-supply constraint. Otherwise, the process has to be
performed in multiple steps.

We will justify this design in detail in our further work.
A brief explanation is as follows. Plain X-Y order topology
will introduce extremely long relay wires (blue lines in Fig-
ure5) between MUs in different rows (e.g., the last MU in
the 1𝑠𝑡 row and the first MU in the 2𝑛𝑑 row), while our
Hilbert curve design can keep all relay wires local, reduc-
ing latency as well as saving energy. There also exist other
designs like the s-shape curve, which can keep relay wires
local. However, we don’t have any good solution to decode
the address mapping of MUs for such designs. Hilbert curve
can be constructed recursively like traditional H-tree. Thus
we only need to change the physical mapping of the decoders
in the H-tree to serve our design. The control signal GL is
also generated recursively by dividing and conquering the
whole linear memory space.

5 Case Study and Evaluation
In this section, we will introduce how to leverage direct

insertion/deletion operations in two applications: cache LRU
replacement and insertion sorting. In this paper, we only
demonstrate simple embedded applications, where there is
no need for virtual memory or dynamic memory allocation,
while far more complex applications can be applied too but
with much more engineering efforts.

5.1 Cache LRU Replacement
LRU is an efficient replacement policy for set-associative

caches. However, due to its high maintenance overhead [17], a
pseudo-LRU rather than an original LRU policy is employed
in high associativity caches. Fortunately, with the help of
insertion/deletion enabled by skyrmion racetrack memory,
the overhead of implementing a real LRU policy can be quite
efficient. We provide a straightforward potential design in
this subsection. Note that it can be further optimized in
practice.



0 0 1 1

1 0 1 1

0 0 0 0

0 0 1 0

Stored Part

Omitted Part

Matrix R

(a)

Discard

Insert

Fetched Line
Most
Recently
Used

0

1

2

…

N-3

N-2

N-1
Least
Recently
Used

Most
Recently
Used

Insert

Delete

0

1

2

…

N-3

N-2

N-1

Matched
Line

Least
Recently
Used

Hit Miss
(b)

Figure 7: (a) SRAM LRU vs (b) Skyrmion racetrack LRU.

Given an 𝑁 -way associative cache, a traditional implemen-
tation (shown in Figure 7a) is to use the upper triangular
part of an 𝑁 ×𝑁 matrix 𝑅 without diagonal to track the least
recently used way per set, costing 𝑁

(︀
𝑁 − 1

)︀
/2 bits [17] per

set. Matrix 𝑅 is initialized as 0. Each time way 𝑖 is referenced,
all bits in row 𝑖 of 𝑅 are set to 1 and then bits in column 𝑖
are reset to 0. The least recently used way 𝑗 is the one for
which the entire row 𝑗 is 0 (for bits in that row; a row can be
empty) or the entire column 𝑗 is 1 (for bits in that column;
a column can be empty [17] ).

For our skyrmion racetrack, the update of tags is simple.
First, we take one set of 𝑁 -associativity cache as an example,
as shown in the Figure 7b. Each time we get a hit, we delete
corresponding cache line LRU index from the tag array, and
add it to the head. If we encounter a miss, just add the LRU
index of the cache line fetched to the head, squeezing out the
least recently used one automatically.

We use gem5[1] integrated with our model for cycle accu-
rate evaluation. We use the Alpha 21364[9, 13] processor as
our baseline. We replace the L2 cache with skyrmion race-
track memory and compare iso-capacity performance. The
system configuration of baseline is listed in Table 2. Architec-
tural results are obtained by gem5. Power consumption and
area are estimated by our model. Our benchmarks are gem5
supported items of SPEC CPU 2006 suite[18]. To reduce
experiment time, we fast-forward 25% of total instructions
to skip the beginning part and perform detailed simulations
for 500 million instructions of each benchmark.

For fair comparison, we evaluate skyrmion racetrack based
cache and the original SRAM based cache of Alpha 21364
both under 45nm process technologies. L2 cache is 32-way
associative. Timing parameters of other parts in the Al-
pha 21364 processor under 45nm process is re-evaluated by
FabScalar [3], a tool generating synthesizable superscalar
processor designs.

Processor Core

Frequency 3.2 GHz
Fetch Width 4
Dispatch Width 4
Issue Width 6
Function Units INT: 4, FP: 2

L1 I-/D-Cache Size, Assoc, Lat. 64KiB, 8 ,1
L2 Cache Size, Assoc, Lat. 2MiB, 32, 17
Cache Line Size 64 Byte
System Memory DDR3 1600 8x8 1 GiB

Table 2: System Configurations
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Figure 8: Cache evaluation results for SPEC benchmarks.

For cache application, our latency-optimized configuration
for skyrmion racetrack memory is {𝐿𝑡𝑟 : 16, 𝑃 𝑁 : 1}. Average
shift latency of the skyrmion racetrack cache is 3.44 ns. Area
of the skyrmion racetrack based cache is only 0.27 𝑚𝑚2. The
counterpart SRAM cache area is about 14.01 𝑚𝑚2. Because
of direct insertion/deletion, the area of LRU design is reduced
by about 50x after using skyrmion racetrack memory.

CPI results for these benchmarks are compared in Fig-
ure 8a. The performance is almost kept the same after the
skyrmion racetrack cache. The shift latency is not an issue of
performance. Although our skyrmion racetrack memory has a
lower access latency, our LRU implementation has to shift to
position 0 after each reference, doubling the access time. The
results for energy consumption are listed in Figure 8b. It is
easy to tell that energy consumption is reduced significantly
after using skyrmion racetrack cache. Furthermore, higher
associativity will widen the lead of our LRU cache design
while a highly-associated LRU cache based on SRAM is even
not feasible.
5.2 Insertion Sort

It is well known that comparison based sort algorithms
require at least Ω

(︀
𝑁 log 𝑁

)︀
comparisons[10]. Our solution

for insertion sort algorithm is very straightforward. We keep
an ordered list and insert data into it. To find a appropriate
position to insert, we use binary search, which at most takes
⌊log2 𝑁⌋ comparisons. After inserting 𝑁 elements, the sort
process will complete. In the worst case, it will takes Σ⌊log2 𝑖⌋
comparisons and Σ

(︀
⌊log2 𝑖⌋ + 1

)︀
memory references. Thus,

the time complexity of our solution is 𝒪
(︀
𝑛 log 𝑛

)︀
, achieving

the asymptotic optimal.
Note that some traditional RAM-based algorithms can

achieve the same asymptotic time complexity. In this part,
we select a large scale input data (sort 50000 vectors by
length) of the qsort benchmark in MiBench [6] suite as our
benchmark. Each vector contains three 64-bit elements. We
evaluate three solutions of sort algorithms using gem5 simula-
tion and list them in Table 3. System configurations are same
as those in Table 2 except that 2MB L2 cache is replaced



with 8MB scratchpad memory using SRAM or skyrmion race-
track memory. Skyrmion racetrack macro unit parameters
are: {𝐿𝑡𝑟 : 512, 𝑃 𝑁 : 32}. Average access latency and access
energy (including shift) are 8.23ns and 21pJ, respectively.
And its area is 0.53𝑚𝑚2. For SRAM, the latency is 4.6ns
and the access energy is 81pJ, with an area of 27.42 𝑚𝑚2.
Evaluation results show that using skyrmion racetrack mem-
ory outperform other solutions. We can conclude that our
direct insertion solution brings significant speedup as well as
impressive energy saving.

Algorithm Execution Memory Normalized
Time(ms) Access(M) Energy

Insertion Sort (SRAM) 1.1 × 104 1.9 × 103 1.5 × 105

Quick Sort (SRAM) 7.1 × 101 1.1 × 101 9.3 × 102

Insertion Sort (SkRM) 1.6 × 101 1.9 4.0 × 101

Table 3: Evaluation comparison for sort benchmark

6 Conclusion
Skyrmion racetrack memory technology has potential to

enable direct insertion and deletion operations. In order to
exploit the benefit in a higher level, we propose a circuit
level model by extending prior framework. With the help
of the circuit model, we can observe that such direct inser-
tion/deletion operations are quite efficient but are limited
inside a single track. To overcome this problem, we further
propose a relay architecture. It can provide a near-linear
scalable solution of extending insertion/deletion operations
to a longer range. After applying the skyrmion racetrack
memory in two applications, evaluation results demonstrate
that data management become more efficient with the help
of direct insertion and deletion operations.
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