
Parallel Stateful Logic in RRAM: Theoretical
Analysis and Arithmetic Design

(Invited Paper)

Feng Wang1,∗, Guojie Luo1,#, Guangyu Sun1, Jiaxi Zhang1, Peng Huang2, Jinfeng Kang2
1Center for Energy-efficient Computing and Applications, Peking University, Beijing, China

2Institute of Microelectronics, Peking University, Beijing, China

Email: {∗yzwangfeng, #gluo}@pku.edu.cn

Abstract—Processing-in-memory (PIM) provides massive par-
allelism with high energy efficiency and becomes a promising
solution to the “memory wall” problem. Recently, the emerging
metal-oxide resistive random access memory (RRAM) has shown
its potential to design a PIM architecture. Several stateful logic
operations, e.g., NOR and NAND, can be executed in parallel in
an RRAM crossbar. Although previous works have designed some
algorithms using the stateful logic, it is still under exploration
how to fully exploit its potential high parallelism and design an
asymptotically fast algorithm for a given function.

In this work, we theoretically analyze the parallelism in an
RRAM crossbar and design several asymptotically optimal arith-
metic algorithms. In detail, we first propose the Single Instruction
Multiple Lines (SIML) model to unify the stateful logic families
and prove three lower bounds on the time complexity of a parallel
RRAM algorithm. Then, we design three algorithms for integer
addition functions with the stateful logic, guided by the lower
bound analysis. All of them reach the time complexity lower
bound. Finally, We make two extensions of the integer addition
algorithms, supporting multiplication functions by decomposing
them to additions and supporting the flex-point data type by
proposing an exponent and mantissa update flow. Experimental
evaluation shows that our integer algorithms achieves a speedup
up to 13.79x over the previous RRAM algorithms. Our flex-point
implementation achieves a 26.60x speedup and saves 73.68%
energy compared to an ARM.

I. INTRODUCTION

In the conventional CMOS-based von Neumann architec-

ture, both programs and data are held in memory. The proces-

sor and memory are separate, and data moves between the two.

In this type of architecture, huge energy-hungry data transfer

between memory and processing units has been the limitation

of computation speed and energy efficiency, i.e., the von

Neumann bottleneck [1]. Aiming at breaking this bottleneck,

processing-in-memory (PIM) architectures and related devices

are receiving widespread research interest.

The emerging metal-oxide resistive random access memory

(RRAM) is one type of non-volatile memories (NVM) [2].

It has been shown a strong candidate to implement a PIM

architecture for two reasons. First, it can be used for low-cost

storage due to its high density, excellent scalability, and low

power. Industrial demonstrations have been presented [3] to

showcase the viability of large memory crossbars. Second,

RRAM has the capability to perform stateful logic opera-

tions [4] beyond storage. It is possible to combine computation

and storage in the same RRAM crossbar due to its flexibility.

In a single-level-cell (SLC) RRAM crossbar, each RRAM

cell can store one-bit information because it has two different

resistance states, the low resistance state (LRS) and the high

resistance state (HRS). These two states can be switched by

applying certain voltage patterns. If several RRAM cells are

connected in series, their states can be affected by others in

certain conditions. This important feature has been leveraged

for computation, and several stateful logic operations have

been conducted in recent years, including IMP [4], NOR [5],

NAND [6], and OR [7].

If the input and the output RRAM cells are aligned along

row (or column) positions, we can implement multiple stateful

logic operations along different columns (or rows) simultane-

ously by applying the same voltage pattern [8]. The degree

of parallelism can reach the size of the crossbar and scale

with the data size due to the PIM capability of RRAM. On

contrary, the degree of parallelism in the conventional von

Neumann architecture is limited by the amount of computing

resources, e.g., Arithmetic Logical Units (ALUs). Despite their

equivalence in computation capability, we can achieve lower

time complexity in RRAM if fully exploiting its parallelism.

Due to the promising possibility of massive parallelism,

previous works have designed several arithmetic functions,

e.g., addition [9] and multiplication [10], [11], using stateful

logic in RRAM. However, these works lack in two aspects.

First, they do not theoretically analyze the parallel computation

capability of the RRAM crossbar and only optimize the

operations ad hocly. Thus, most of their designs cannot get

the optimal time complexity. Second, most of these works

only target the integer or fixed-point data type, which does not

support the real number functions well and limits the scope

of their applicability.

In this work, we address these two problems with the

following contributions:

• We propose a uniform SIML model for stateful logic

families in RRAM. Based on this model, we prove three

lower bounds on the time complexity of a parallel RRAM

algorithm. The time complexity is determined by both the

data layout and the logic operations.

157

2019 IEEE 30th International Conference on Application-Specific Systems, Architectures and Processors (ASAP)

2160-052X/19/$31.00 ©2019 IEEE
DOI 10.1109/ASAP.2019.000-8

(a) Structure. (b) State transitions.

Fig. 1: Schematic of an RRAM cell.

Fig. 2: A NOR operation Z = NOR(X,Y). RRAM Z is

initialized to LRS. VG satisfies VG>2VRESET. Z will be reset

to HRS if X or Y stays at LRS.

Fig. 3: Parallel NOR operations in a crossbar. We can exe-

cute WL operations Rim=NOR(Ri1, Ri2) or BL operations

Rmi=NOR(R1i, R2i) for 1≤i≤m in parallel.

• We design three parallel RRAM adders: a ripple carry

adder, a carry select adder, and a carry save adder, for

the integer addition functions guided by the lower bound

analysis. We prove that these algorithms reach the time

complexity lower bound.

• We make two extensions of the integer addition algo-

rithms. The first is supporting multiplication functions

by decomposing them to several additions. The second is

supporting the flex-point data type by proposing a flow to

update the exponent and the mantissa part simultaneously.

• We experimentally evaluate our integer addition and

multiplication algorithms and show a speedup up to

13.79× over previous RRAM algorithms. Our flex-point

implementation achieves a 26.60× speedup and saves

73.68% energy compared to an ARM processor.

II. BACKGROUND

A. RRAM Resistance for Representing Logic Values

An RRAM cell [12] has a simple metal-insulator-metal

sandwich structure with two terminals connecting to the word

line (WL) and the bit line (BL), respectively, as shown in

Fig. 1a. Its internal resistance has two states, the low resistance

state (LRS) and the high resistance state (HRS), which can be

switched mutually at certain conditions, as summarized in a

state machine in Fig. 1b. When applying a positive voltage

which is larger than VSET, RRAM cells can be switched

TABLE I: Stateful logic families.

Work Stateful logic operations
[4] IMP
[5] NOR, NOT
[6] NAND, NIMP
[7] NOR, NAND, Min, OR
[13] NOR, NOT, NAND, NIMP, XOR

from HRS to LRS. When applying a negative voltage with

a magnitude larger than the erase voltage VRESET, RRAM

cells can be switched from LRS to HRS. Usually, we define

HRS as logical 0 and LRS as logical 1. Under this definition,

SET and RESET implement the logic operations Y=1 and

Y=0, respectively.

B. RRAM State Switching as Primitive Logic Operations

Stateful logic, where both the inputs and outputs of a

logic gate are the RRAM resistive states, is one of the

processing-in-RRAM techniques. Fig. 2 shows the schematic

of Memristor-Aided loGIC (MAGIC) [5], a widely-used state-

ful logic family. In this example, we apply a voltage pulse

of VG, VG, and GND on one end of cells X, Y, and Z,

respectively and connect their other ends. When we initialize

Z to LRS and set VG>2VRESET, we perform a NOR operation

Z=NOR(X,Y).
Here we give a detailed examination of this two-input NOR

operation. Two input cells X and Y are connected in parallel.

When one of the inputs stays at LRS, the total resistance of the

inputs is smaller than LRS. As a result, the negative voltage on

Z is greater than VG/2>VRESET and is large enough to reset

it into HRS. Otherwise, the voltage on Z is close to zero, and

Z remains unchanged. Z’s value becomes 0 only if at least one

of the inputs is 1, which is consistent with the NOR logic.

Fig. 3 shows the schematic of NOR performed over rows

and columns within a symmetric RRAM crossbar. The m wires

at the top are WLs and the m ones at the bottom are BLs.

Each junction of a WL and a BL has an RRAM cell. Parallel

execution of operations requires alignment of their inputs

and outputs. Thus, we can apply a logic operation to WLs

(also referred as WL operations) or BLs (also referred as BL

operations) simultaneously using the same voltage pattern. The

operation takes the period of a single voltage pulse, regardless

of the number of parallel rows or columns [8].

C. RRAM-based Stateful Logic Families

Previous works have demonstrated some other stateful logic

families, which are summarized in Table I. These works are a

little different in their implementation details. For example,

Huang et al. define HRS and LRS as logical 1 and 0,

respectively [6]. Xu et al. combine the unipolar and bipolar

devices in the same crossbar [13]. Despite the differences,

all support parallel execution across multiple WLs or BLs in

a symmetric RRAM crossbar if the inputs and outputs are

aligned. Also, these stateful logic families are functionally

complete, and thus, any logic functions can be implemented

in a finite number of RRAM cells using finite voltage pulses.

158

Fig. 4: A diagram for four types of the time complexity lower bound of a parallel RRAM algorithm in the SIML computation

model. The three example functions and their algorithms (netlists) reach the corresponding lower bound.

III. THEORETICAL ANALYSIS

This section first proposes a model to unify different stateful

logic families and then proves three lower bounds of the time

complexity for this model.

A. SIML Computation Model

We propose a uniform Single Instruction Multiple Lines

(SIML) model for all of the stateful logic families summarized

in TABLE I. There are mainly four assumptions in this model:

• The latency of a single stateful logic operation in TA-

BLE I is identical. And it is independent of the input

number and the distances among input and output lines.

• The input number of a single operation cannot exceed

a constant inputmax due to some physical constraints.

inputmax is usually less than 10 in the literature.

• In an RRAM crossbar, the latency of WL and BL

operations is identical. And it is independent of the degree

of parallelism and the distances among active lines.

• In an RRAM crossbar, the degree of parallelism for any

operation can reach the crossbar size, and the crossbar

size scales with the problem size.

The former two assumptions are for a single stateful logic

operation, and the latter two are related to the parallel oper-

ations. The time complexity in this model is only dominated

by the function and the algorithm design but not the crossbar

size. We will discuss the relationship between the crossbar

size and the time complexity in the experimental section. This

computation model runs in a SIML fashion, a two-dimensional

Single Instruction Multiple Data (SIMD) execution. Compared

to the CMOS-based von Neumann architecture, the degree

of parallelism in this model can scale with the data size.

Moreover, the parallelism improvement costs only energy but

not hardware.

All of the stateful logic families in TABLE I satisfy the

four assumptions. They only have two differences in this

model, both of which have no effect on the order of the time

complexity. First, they propose different operations executed

in one voltage pulse. Nevertheless, we can implement a logic

family with another logic family in finite pulses due to its

completeness. For example, we can implement XOR, the

most complex operation proposed by Xu et al. [13], using

MAGIC [5] in six voltage pulses, and thus, Xu et al.’s work

is at most six times faster than MAGIC. Second, they have

different inputmax’s. It is not hard to prove that an inputmax-

input operation can be replaced by no more than inputmax −1
two-input operations. Since inputmax is a constant in our

model, a larger inputmax cannot affect the time complexity

order, either. Without loss of generality, we design arithmetic

algorithms using two-input MAGIC operations in this work.

B. Lower Bounds of the Time Complexity

We prove three lower bounds concerning the time complex-

ity of the parallel RRAM algorithms in this SIML computation

model, as summarized in Fig. 4. For a given logic function,

we assume that the serial RRAM implementation takes O(T)
voltage pulses. We can design a parallel RRAM algorithm

for this function, and the computation in the RRAM crossbar

occupies a w BLs ×h WLs rectangular layout.

Theorem 1. Ordinary lower bound. The time complexity
lower bound of the parallel RRAM algorithm is O

(
T

max(w,h)

)
.

Proof. In a single voltage pulse, at most max(w, h) operations

can be executed in parallel, with w BL operations or h WL

operations. When the maximal parallel operations are executed

in every step, the time complexity is O
(

T
max(w,h)

)
.

Theorem 1 gives the ordinary time complexity lower bound.

Reaching this lower bound requires parallel operations along a

single direction and negligible data copy overhead; thus, only

a bitwise function with aligned data placement can be a tight

instance.

Theorem 2. Shape lower bound. If the inputs are stored in
an O(w)×O(h) rectangular area, and the outputs are stored
in an o(w)×o(h) rectangular area, the time complexity lower
bound of a parallel RRAM algorithm is O(w + h), assuming

159

that there are no useless inputs, i.e., every input affects at least
one output.
Proof. Input data in at least O(w)−o(w) = O(w) BLs need to

affect an output in the different BL, which can be realized only

through a WL operation. Note that a WL operation contains

constant BLs, there are at least O(w) voltage pulses for

parallel WL operations. BL operations can be analyzed in the

same way. The total time complexity is at least O(w+h).

In particular, Theorem 2 proves a stronger conclusion than

Theorem 1 when T = O(wh) and the ordinary lower bound
is O(min(w, h)). We can infer that the time complexity lower

bound still holds if there are more outputs. For example,

in Fig. 4b, computing Yn requires the inputs X11 to Xn1,

which occupy an n× 1 area, so the time complexity is O(n).
Computing all Yi’s still takes at least O(n) voltage pulses.

Most arithmetic functions can satisfy the conditions in this

theorem because the most significant bit of the output is

usually related to all of the input bits.

The input and output data size for the given function is a

constant, i.e., wh is given. As a result, it is better to constraint

the computation in a square area. We have the following

corollary on a shape irrelevant lower bound:

Corollary 1. Function lower bound. Under the conditions
specified in Theorem 2, O(w+h) is further lower bounded by
O(

√
wh) for any input shape. A tight instance for the lower

bound O(
√
wh) can be attained only if w = Θ(h).

These two theorems prove the time complexity lower bound

dominated by the size and the shape of the layout. Besides,

different parallel RRAM algorithms can also lead to different

time complexity, and we have the following lower bound.

Theorem 3. Algorithm lower bound. The algorithm corre-
sponds to a netlist, which can be regarded as a directed acyclic
graph G=〈V,E〉, in which V is the set of variables, and E
represents the MAGIC operations. If Y=NOR(A,B) exists
in the algorithm, there is an edge from A, B to Y in G,
respectively. If the length of the critical path, i.e., the longest
path from an input to an output, in G is lenmax, the time
complexity lower bound is O(lenmax).
Proof. Computing the output in the critical path requires

lenmax operations, which have to be executed in series. As

a result, the time complexity lower bound is O(lenmax).

Fig. 4d shows an extreme case. The critical path is from

the input x1 to the output Y , and the whole computation

procedure is inherently sequential. In fact, we can get a lower

time complexity by reducing the inputs with a NOR tree. This

theorem tells us that if we want to reach the lower bound

proved in Theorem 1 and 2, we need to select an algorithm

with an equal or lower time complexity.

IV. INTEGER ADDITION

According to the lower bound analysis in the last section,

to design an efficient parallel RRAM algorithm, we first

determine the data layout and then select a suitable algorithm.

This section proposes three parallel algorithms for integer

addition, as shown in Fig. 5. The “ripple carry adder” and

TABLE II: One-bit full adder. A+B + Ci = (Co, S).

Pulse Logic operation
1 T1 = NOR(A,B)
2 T2 = NOR(A, T1)
3 T3 = NOR(B, T1)
4 T4 = NOR(T2, T3)
5 T5 = NOR(T4, Ci)
6 Co = NOR(T1, T5)
7 T6 = NOR(T4, T5)
8 T7 = NOR(T5, Ci)
9 S = NOR(T6, T7)

“carry select adder” are two parallel RRAM algorithms for

the addition of two n-bit integers. And the “carry save adder”

is a parallel RRAM algorithm for the addition of M n-bit

integers. We prove that these algorithms attain some of the

lower bounds.

A. Ripple Carry Adder

Fig. 5a shows the ripple carry adder, which is extended

from the one-bit full adder, for integers stored in two WLs.

As shown in Table II, the computation procedure of a one-

bit full adder takes 9 voltage pulses and 7 temporary RRAM

cells (T1 to T7). The 5th and 6th steps generate carries and

they need to be executed in series, while the other steps can be

executed in parallel among different bits. Thus, it takes about

3n+7 voltage pulses to add two n-bit integers, in which the

coefficient 3 is from the 5th, the 6th, and the carry propagation

pulses.

Our ripple carry adder algorithm reaches the shape lower
bound and the algorithm lower bound. On the one hand, if

the input integers are stored in an O(n)×O(1) layout, we can

infer from Theorem 2 that the shape lower bound is O(n).
On the other hand, the critical path in the ripple carry adder

is from A11, A21 to Sn, so the algorithm lower bound is no

less than its length O(n).

B. Carry Select Adder

To further reduce the time complexity, considering that the

input and output data in the addition occupy O(n) cells, i.e.,
wh≥O(n), we set w=Θ(h)=Θ(

√
n) to reach the function

lower bound O(
√
n). Meanwhile, according to Theorem 3, the

O(n) ripple carry adder is not qualified, so we use the faster

carry select adder. The key point of the carry select adder is

to divide the integer into several segments and add the more-

significant segments by trying both possible carry-ins.

Fig. 5b shows our carry select adder. For simplicity’s sake,

we assume that n is a square number, and each input integer

occupies a
√
n×√

n area; otherwise, we store the input in a

rectangular area close to a square. The computation procedure

consists of three stages. First, we copy the whole input except

the first WL, which takes one voltage pulse per WL and
√
n−1

pulses in total. Second, we add each WL in parallel. We assign

the carry-in 0 for the top
√
n WLs and 1 for the bottom

√
n−1

WLs. This stage performs 2
√
n−1

√
n-bit addition in parallel

and takes O(
√
n) pulses. Third, we select the correct output

of the more-significant segments according to the carry-out of

160

(a) Ripple carry adder A1 +A2 = S. (b) Carry select adder A1 +A2 = S.

(c) Carry save adder A1 +A2 +A3 = S. (d) Dot product A1 ·A2. A1 = (a11, ..., a1M).

Fig. 5: Four parallel RRAM algorithms for the integer arithmetic functions. The bit width is n. Each cell represents a single

RRAM cell in (a)-(c) and n cells in (d). The input and output data are stored in the green area, and the computation procedure

is labelled by blue arrows. All of the parallelism reaches the time complexity lower bound, as summarized in TABLE III.

TABLE III: Time complexity and their corresponding lower bound type of the integer arithmetic algorithms.

Function Algorithm Layout Time complexity Lower bound type
two n-bit integer addition ripple carry adder O(n)×O(1) O(n) shape / algorithm bound

two n-bit integer addition carry select adder O(
√
n)×O(

√
n) O(

√
n) function / algorithm bound

M integer addition carry save adder O(
√
M)×O(

√
M) O(

√
M) function bound

M -dimensional dot product – O(
√
M)×O(

√
M) O(

√
M) function bound

the less-significant segments. which takes O(1) pulses per WL

and O(
√
n) pulses in total. The time complexity of the carry

select adder reaches the function lower bound O(
√
n).

C. Carry Save Adder

We also propose an algorithm for the addition of multiple

integers. Considering that the time complexity is mainly

dominated by the integer number M , we assume that the bit

width n is a constant. For simplicity, we also assume that M
is a square number.

According to Corollary 1, we store the integers in an

n
√
M×√

M square area, with
√
M integers in each WL, to

reach the function lower bound. We first accumulate each WL

in parallel, and the time complexity is O(
√
M). Then, we

accumulate the sums in the same BLs. The carry generation

and propagation steps are the bottleneck in the ripple carry

adder, so we exploit another adder similar to a carry save

adder, which consists of three steps:

1) Add n BLs (or bits) in parallel. The carries are stored

in original BLs temporarily.

2) Shift carries to the right for a certain length. If there are

more than two addends, go to Step 1).

3) Add the last two addends using a ripple carry adder.

Step 2) aligns the carries so they can be added again. Fig. 5c

gives an example of three addends. First, n BLs are added in

parallel to generate carries (Cok) and partial sums (PSk). Then

the carry WL is shifted right for one bit and the two-integer

ripple carry addition is performed on partial sums and shifted

carries. All operations in the procedure can be highly parallel

except the shift, which takes O(n) pulses for an integer.

161

(a) Fixed-point representation.

(b) Float-point representation.

(c) Flex-point representation.

Fig. 6: Bit representations of three real data types. Green and

blue cells signify the mantissa and exponent bits, respectively.

After one iteration,
√
M addends are reduced to

log
√
M addends with log

√
M right shift operations.

To accumulate all addends, the number of shift opera-

tions is log
√
M+ log log

√
M+...=O(log

√
M), and it takes

O(n log
√
M) pulses. As a result, the time complexity of the

carry save adder is O(
√
M+n log

√
M)=O(

√
M). The total

complexity of M -integer addition reaches its function lower
bound O(

√
M) proved by Corollary 1.

V. EXTENSION

A. Multiplication Extension

Due to the high parallelism of the integer addition, we can

implement some multiplication functions, e.g., dot product,

vector-matrix multiplication, matrix-matrix multiplication, and

Hadamard product,by decomposing them to series of addi-

tions. To achieve a low time complexity, the key idea is to

store the input in a squared area and utilize a fastest adder,

e.g., the carry select adder or the carry save adder.

Fig. 5d gives an example of the M -dimension dot product.

Both input vectors occupy an n
√
M×√

M square area. We

first perform the element-wise multiplication in parallel. Two

n-bit integer multiplication can be decomposed to n n-bit

integer additions and takes O(n2) voltage pulses in series.

It takes O(n2
√
M) pulses to multiply all elements. Then,

we accumulate the M products P1 to PM as described in

the previous section, i.e., accumulate all WLs to S1 to S√
M ,

and accumulate Sk’s using the carry save adder, which takes

O(
√
M) pulses. We still consider n a constant, and the time

complexity of the whole algorithm is O(
√
M), which also

reaches the function lower bound proved by Corollary 1.

B. Flex-point Extension

The real number is employed more widely than the integer

in actual applications, so this section extends the proposed

Fig. 7: Implementation of a flex-point function across vectors.

integer functions to adapt the real number applications.

Fig. 6 illustrates three common real data types. The fixed-

point type (Fig. 6a) shares a common exponent among all of

the numbers, which leads to a significant precision loss when

the data vary in a wide range. The float-point type (Fig. 6b)

assigns an exponent for each number to improve the precision,

but it occupies much more area and has higher computation

complexity. Different from them, the flex-point [14] (Fig. 6c)

is a data type that combines their advantages. By using a com-

mon exponent for integer values in a vector, flex-point reduces

computational and memory requirements simultaneously. As a

result, we select the flex-point data type to represent the real

number in the RRAM crossbar.

To fully exploit the two-dimensional parallelism in the

SIML model, we set the vector length of the flex-point type to

the crossbar size. That is to say, numbers in the same BLs share

the same exponent, while numbers in the same WL can have

different exponents. As shown in Fig. 7, {aij |j ∈ [1, n]} are

mantissas and share the exponent expi. The exponents occupy

the first WL in the crossbar. We only update an exponent when

its corresponding vector is created or modified by the other

vectors.

Numbers in the same BLs can be regarded as the fixed-

point type. The fixed-point addition is the same as the integer

one, but the fixed-point multiplication is a little different.

In order to preserve a faithful representation, numbers with

a shared exponent must have a sufficiently narrow dynamic

range such that mantissa bits alone can encode variability.

However, if the exponent is not equal to 1, the product needs a

different exponent from the inputs. Therefore, we do not allow

multiplication in the same vector.

Fig. 7 shows the implementation of a flex-point function

across numbers in multiple vectors. The controller outside the

crossbar not only dispatches instructions (voltage patterns) to

the crossbar as in the integer function implementation but

also participates in the computation by updating the output

exponent. In detail, the implementation consists of five steps:

1) Read the input exponents to the controller. The controller

examines whether the output will overflow.

2) Send arithmetic instructions to the mantissas in the

crossbar and compute the output mantissa. This step

preserves full precision of the output.

3) Check the output status to find the most significant

162

(a) Two n-bit integer addition.

(b) M 8-bit integer addition.

(c) The maximal data size M in one crossbar.

Fig. 8: Comparison of two types of the integer addition.

bit that differentiate the mantissas. This check can be

parallelized among different BLs using a bitwise OR

and AND operation [15] and takes O(n) pulses.

4) Send the left shift instructions to the output mantissa.

The bits more significant than the bit found in Step 3)

are useless and have to be erased. Shift operations can be

parallelized among multiple WLs and take O(n) pulses.

5) Compute the output exponent according to the function

type, the input exponents, and the left shift length.

Step 3) to 5) dynamically adjusts the output exponent to

minimize overflows of the output mantissas and maximize the

available dynamic range. The CMOS-based controller is faster

than the RRAM, so its latency overhead can be ignored. The

total time complexity is dominated by Step 2), the mantissa

computation.

VI. EXPERIMENTAL EVALUATION

A. Addition Algorithm Evaluation

We compare our two n-bit integer addition algorithms with

the MAGIC-adder [8] using one RRAM crossbar, as shown in

Fig. 8. Our ripple carry adder achieves a 3.09× speedup on

average. Both this adder and the previous work have the same

time complexity O(n), and the speedup mainly comes from

our parallel computation among different bits in Step 1© and

Step 3© (see Fig. 5a).

Our carry select adder achieves a 5.05× speedup on average

and is the fastest adder. The ripple carry adder has advantages

when n is sufficiently small, i.e., no more than 8, because the

copy and selection overhead in the carry select adder cannot

be ignored. However, the speedup of the carry select adder

(a) Dot product. (b) Hadamard product.

Fig. 9: Comparison of two integer multiplication kernels.

(a) Latency. (b) Energy per bit.

Fig. 10: A comparison between RRAM and CPU on square

matrix multiplication using the flex-point data type.

continues to improve with the integer bit width and reaches

7.3× when n = 64 due to its lower time complexity O(
√
n).

Fig. 8b compares our carry save adder with two previous

MAGIC-based algorithms in the M integer addition. We

assume that the crossbar size is infinite so the latency is

only dominated by the algorithm itself. Our work achieves a

13.79× and a 4.15× speedup compared to MAGIC-adder [8]

and APIM [9]. Both of the two previous works have the O(M)
time complexity, which is higher than our O(

√
M) complexity.

As a result, the speedup of our carry save adder also improves

with the data size.

Fig. 8c takes the crossbar size into consideration. APIM

places the input data in the same WL or BL, so the parallelism

reaches the upper bound, i.e., the crossbar size, when the data

size reaches the crossbar size. Different from that, our carry

save adder places the input in a square area, and the maximal

M in one crossbar is much higher than that in APIM. As a

result, our work has higher area efficiency and throughput for

a given crossbar size.

B. Multiplication Algorithm Evaluation

We evaluate our multiplication implementation using two

image processing kernels, the dot product and the Hadamard

product. We compare our algorithms with the state-of-the-art

MAGIC-based image processing accelerator IMAGING [11],

as shown in Fig. 9. Our work achieve a 3.36× and a 2.07×
speedup on two benchmarks, respectively. IMAGING imple-

ments these two benchmarks both using a O(M) algorithm,

while we can design O(
√
M) algorithms. Similar to our

analysis on M integer addition, we can place much more data

in a crossbar and have higher area efficiency and throughput

due to the square placement scheme.

C. Flex-point Support Evaluation

We evaluate our flex-point support by comparing our work

with an ARM-v8 architecture that runs at 2 GHz with two 32

163

TABLE IV: RRAM configuration parameters.

Parameter Value
Technology node 65 nm

Crossbar size 512×512
Frequency (#pulses/s) 769 MHz [5]

Energy per MAGIC operation 34 fJ [8]

KB L1 caches and a 2 MB L2 cache using the square matrix

multiplication as a benchmark. The performance of this ARM

is simulated by Gem5 [16]. We evaluate the performance of

RRAM according to the parameters listed in Table IV. The

power of the controller is obtained by synthesizing with Open

Cell Library [17] using Synopsys Design Compiler. We write a

simulator to estimate the overall performance from these data.

According to Fig. 10a, our work achieves a 26.60× speedup

on average. The algorithm running in ARM is in serial, and the

time complexity is O(M3). However, the time complexity of

the parallel algorithm in RRAM can reach O(M2). In fact, it is

time-consuming for RRAM to implement simple functions. An

ARM can execute an integer-level operation per cycle while

RRAM can only execute a bit-level operation. We make full

use of the parallelism in RRAM to make up the disadvantage.

Fig. 10b illustrates the high energy efficiency of RRAM.

Our work saves 73.68% energy compared to the ARM. The

Y-axis measures the unit energy consumption to some degree,

since matrix multiplication is an O(M3) problem. It is nearly

a constant for a given hardware. For RRAM, most of the

computation is concentrated in the crossbar, and the energy

consumed by the controller only accounts for less than 10%.

VII. RELATED WORK

There are lots of efforts on RRAM-based stateful logic.

IMP [4] is the earliest one. Several Boolean logic operations,

including NOR [5], NAND [6], OR [7], and XOR [13],

are also implemented after then. Several studies [18], [8],

[9], [10] optimize the addition and multiplication manually.

They implement some more complex applications in image

processing [11] based on these arithmetic functions. However,

they do not fully utilize the parallel potential of RRAM and

thus do not achieve the optimal result.

Some studies perform computation on RRAM without state-

ful logic. For example, Pinatubo [15] implements bulk bitwise

operations by redesigning the read circuitry. Besides digital

fashion, some works [19], [20] accelerate neural networks

acceleration in the analog fashion. Despite low latency, it lacks

in accuracy and suffers from high variation, which restricts

its scope of applications. Moreover, power consumption from

additional AD-conversion and I/Os cannot be ignored [21].

VIII. CONCLUSION

In this work, we propose the SIML computation model for

stateful logic in RRAM and prove three lower bounds on the

time complexity. Under the guide of such analysis, we design

three integer addition algorithms and prove that all of them

reach the lower bound. Moreover, We make two extensions

of our algorithms to support multiplication and flex-point
functions and broaden the application scope. Experimental

evaluations demonstrate that our approach has advantages in

both latency and energy efficiency.

REFERENCES

[1] V. Kumar, R. Sharma et al., “Airgap Interconnects: Modeling, Op-
timization, and Benchmarking for Backplane, PCB, and Interposer
Applications,” IEEE Trans. on Components Packaging & Manufacturing
Technology, vol. 4, no. 8, pp. 1335–1346, 2014.

[2] H. Akinaga and H. Shima, “Resistive Random Access Memory
(ReRAM) Based on Metal Oxides,” Proceedings of the IEEE, vol. 98,
no. 12, pp. 2237–2251, 2010.

[3] T.-y. Liu, T. H. Yan et al., “A 130.7-mm2 2-Layer 32-Gb ReRAM
Memory Device in 24-nm Technology,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 1, pp. 140–153, 2014.

[4] J. Borghetti, G. S. Snider et al., “‘Memristive’ switches enable ‘state-
ful’logic operations via material implication,” Nature, vol. 464, no. 7290,
p. 873, 2010.

[5] S. Kvatinsky, D. Belousov et al., “MAGIC–Memristor-aided logic,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899,
2014.

[6] P. Huang, J. Kang et al., “Reconfigurable nonvolatile logic operations
in resistance switching crossbar array for large-scale circuits,” Advanced
Materials, vol. 28, no. 44, pp. 9758–9764, 2016.

[7] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient
logic in memory,” in Int’l Conf. on Computer-Aided Design (ICCAD),
2018.

[8] N. Talati, S. Gupta et al., “Logic design within memristive memories
using memristor-aided loGIC (MAGIC),” IEEE Trans. Nanotechnol.,
vol. 15, no. 4, pp. 635–650, 2016.

[9] M. Imani, S. Gupta, and T. Rosing, “Ultra-Efficient Processing In-
Memory for Data Intensive Applications,” in Design Automation Conf.
(DAC), 2017.

[10] A. Haj-Ali, R. Ben-Hur et al., “Efficient Algorithms for In-memory
Fixed Point Multiplication Using MAGIC,” in Int’l Symp. on Circuits
and Systems (ISCAS), 2018.

[11] ——, “IMAGING-In-Memory AlGorithms for Image processiNG,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, no. 99, pp. 1–14, 2018.

[12] S.-S. Sheu, M.-F. Chang et al., “A 4Mb embedded SLC resistive-RAM
macro with 7.2 ns read-write random-access time and 160ns MLC-access
capability,” in Int’l Solid-State Circuits Conf. (ISSCC), 2011.

[13] L. Xu, L. Bao et al., “Nonvolatile memristor as a new platform for non-
von Neumann computing,” in Int’l Conf. on Solid-State and Integrated
Circuit Technology (ICSICT), 2018.

[14] U. Köster, T. Webb et al., “Flexpoint: An adaptive numerical format
for efficient training of deep neural networks,” in Advances in neural
information processing systems, 2017.

[15] S. Li, C. Xu et al., “Pinatubo: A processing-in-memory architecture for
bulk bitwise operations in emerging non-volatile memories,” in Design
Automation Conf. (DAC), 2016.

[16] N. Binkert, B. Beckmann et al., “The gem5 simulator,” ACM SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[17] J. E. Stine, I. Castellanos et al., “FreePDK: An open-source variation-
aware design kit,” in Int’l Conf. on Microelectronic Systems Education
(MSE), 2007.

[18] H. Li, B. Gao et al., “A learnable parallel processing architecture towards
unity of memory and computing,” Scientific reports, vol. 5, p. 13330,
2015.

[19] P. Chi, S. Li et al., “Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory,” in Int’l
Symp. on Computer Architecture (ISCA), 2016.

[20] X. Sun, S. Yin et al., “XNOR-RRAM: A scalable and parallel resistive
synaptic architecture for binary neural networks,” in Design, Automation,
and Test in Europe (DATE), 2018.

[21] C. Liu, B. Yan et al., “A spiking neuromorphic design with resistive
crossbar,” in Design Automation Conf. (DAC), 2015.

164

