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Abstract—Deep convolutional neural networks (CNNs) have
achieved remarkable performance at the cost of huge compu-
tation. As the CNN models become more complex and deeper,
compressing CNNs to sparse by pruning the redundant connec-
tion in the networks has emerged as an attractive approach to
reduce the amount of computation and memory requirement.
On the other hand, FPGAs have been demonstrated to be
an effective hardware platform to accelerate CNN inference.
However, most existing FPGA architectures focus on dense CNN
models. These dense architectures are inefficient when executing
sparse models as most of the arithmetic operations involve
addition and multiplication with zero operands.

In this work, we propose a hardware accelerator for sparse
CNNs on FPGAs. To efficiently deal with the irregular connec-
tions in the sparse convolutional layers, we propose a weight-
oriented dataflow that exploits element-matrix multiplication as
the key operation. Each weight is processed individually which
yields low decoding overhead. Then we design an FPGA archi-
tecture which features with a tile look-up table and a channel
multiplexer. The tile look-up table (TLUT) is designed to match
the index between sparse weights and input pixels. Using TLUT,
the runtime decoding overhead is mitigated by using an efficient
indexing operation. Moreover, we propose a weight layout to
enable efficient on-chip memory access without conflicts. To
cooperate with the weight layout, a channel multiplexer (CMUX)
is inserted to locate the address. Experiments demonstrate that
our accelerator can achieve 223.4-309.0 GOP/s for the modern
CNNs on Xilinx ZCU102, which provides a 2.4X-12.9X speedup
over previous dense CNN accelerators on FPGAs.

I. INTRODUCTION

Inspired by the biological nervous system, deep learning has

recently achieved remarkable accuracy improvement. Convo-

lutional neural networks (CNNs), the most commonly used

model in deep learning, have been adopted in various domains,

including image and speech recognition [1–4]. The significant

accuracy improvement of CNNs comes at the cost of huge

computational complexity as it requires a comprehensive as-

sessment of all the regions across the feature maps.

Pruning deep neural networks has been proved as an effec-

tive solution to reduce the overall computation and memory

requirements of these models while maintaining high accuracy

[5, 6]. For example, Han et al. [5, 6] have shown that there

is significant redundancy (up to 90%) for certain DNNs,

which can be pruned without sacrificing the accuracy. Prun-

ing techniques theoretically reduce the number of operations
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in the convolution algorithm, which potentially provide the

opportunities for faster inference process.

However, existing architectures on FPGAs for dense models

are not suitable for sparse CNN models. Most of these works

optimize their dataflows based on loop operations like loop in-

terchange and loop unrolling [7, 8]. The dense architecture can

result in high hardware inefficiency since most multiplication

operations involve zero operands [7–16]. Implementation of

sparse DNNs has been studied in recent years on FPGAs[17].

These architectures mainly focus on the FC layers, which

mainly use matrix-vector multiplication operations and are

used in RNNs and LSTMs. However, the major operators of

the modern CNN’s computation are convolution operations.

For example, the convolution operations occupy 90% of the

total computation in GoogLeNet. Although the spatial con-

volution can be mapped to matrix-vector multiplications, this

will increase the local memory requirement since the pixels in

the input feature maps have to be copied multiple times when

being flattened to a vector.

To design an efficient FPGA accelerator for sparse CNN

models, it is very challenging due to the following reasons,

• The convolutional layers involve complex connections be-

tween input feature maps and output feature maps for sparse

CNNs. Clearly, each output pixel is connected with part of

the input pixels through the sliding kernels. The connection

becomes irregular when the network becomes sparse. It is

difficult to design a dataflow to deal with the irregularity

but can leverage the high parallelism of FPGA and maintain

FPGA efficiency.

• The sparse weights are encoded in sparse format, which

requires extra coordinate computation to locate the weights.

However, the distribution of the sparse weights (non-zeros)

is irregular, which leads to inefficient memory access and

low on-chip bandwidth utilization.

To address the first challenge, we propose a weight-oriented

dataflow where each PE performs element-matrix multiplica-

tion instead of spatial convolution. Here, the element refers to

the sparse weight and the matrix refers to the input tile. In

this dataflow, the sparse weights are processed separately. By

doing this, we successfully avoid the design issues related to

sparsity such as irregular connections and load imbalance, etc.

For the second challenge, we propose a weight layout, which
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Fig. 1. A typical convolutional layer

Fig. 2. Invalid computation caused by redundant connections in sparse CNNs

can enable efficient on-chip memory access of the weights.

In this layout, the weights processed in parallel are stored

continuously, and the results are accumulated from different

BRAM banks to avoid access conflicts. Moreover, we design

an efficient architecture for sparse CNNs that features with a

tile look-up table (TLUT) and a channel multiplexer (CMUX).

TLUT can reduce the overhead of runtime index matching and

CMUX helps to locate the output address easily when updating

the results.

In conclusion, this work makes the following contributions,

• We propose a dataflow with element-matrix multiplication

as the key operation, where the element and the matrix refer

to the sparse weight and input tile, respectively.

• We propose a weight layout which can enable efficient on-

chip memory access. In this layout the weights used in

parallel are stored continuously.

• We propose a set of architecture optimization techniques

for sparse CNNs. We design a look-up table to match the

weight with the corresponding input pixels and a channel

multiplexer to locate the output address.

Experiments demonstrate that our accelerator can achieve

309.0, 223.4, 291.4 and 257.4 GOP/s for VGG, Alexnet,

Resnet and GoogLeNet on Xilinx ZCU102, respectively. Our

accelerator achieves a 2.4X-12.9X speedup over the previous

dense CNN FPGA accelerators. Compared to TitanX GPU

platform, our accelerator shows 7.56x energy-efficiency.

II. BACKGROUND

CNNs are a class of deep, feed-forward artificial neural

networks, which are composed of a series of layers including

convolutional layers, pooling layers and fully-connected layers

(FC layer). The convolutional layer is the most important

layer in which the kernels extract features from the input

feature map. Figure 1 shows the typical convolution operation.

The convolution operation uses a small R× S kernel to slide

through the input feature map and the pixels inside the

sliding window conduct a multiply-and-add operation with the

weights in the kernel to compute a pixel value in the H ×W
output feature map. There are usually many input feature maps

TABLE I
ANALYSIS OF RECENT SPARSE CNN DATAFLOW

dataflow type
inner

computation
sparse format

Coordinate
computation

SCNN[22]
pixel-

oriented
Cartesian
Product

# of
in-between 0

high

CambriconX[23]
kernel-
oriented

Vector dot
product

direct/stepping
index

medium

Ours
weight-
oriented

element-matrix
multiplication

COO low

(aka input channels) and output feature maps (output channels)

in a single convolutional layer, and the numbers of input

maps and output maps are M and N as shown in Figure 1,

respectively. Note that the convolution results in the different

input channels are accumulated to obtain the output channel

results.

CNNs usually have a large number of weights, which could

introduce the problem of over-fitting. The weights pruning

techniques [5, 6] have been proven to be an effective method

to reduce the computation and memory size while maintaining

the overall model accuracy. For example, Deep Compression

[5, 6] can reduce the number of weights in AlexNet [18] and

VGG-16 [3] by 9X and 13X, respectively. These are known

as unstructured pruning techniques. There are other pruning

techniques which prune the weights with structured patterns

[19–21]. The advantage of structured pruning techniques is

they are hardware friendly. However, they often yield a low

compression rate due to the strict mathematical formalization.

The sparse CNN accelerators we propose can be used for both

structured and unstructured pruning techniques.

III. WEIGHT-ORIENTED DATAFLOW

There have been prior efforts on designing dataflows for

sparse CNNs on ASIC platforms. However, these dataflows

will be inefficient for FPGA platforms due to the distinct

architectures. In Table I, we classify prior ASIC designs based

on the inner computation of the dataflow. SCNN architecture

[22] applies the pixel-oriented dataflow where the innermost

computation is a Cartesian product. Using Cartesian product,

this dataflow multiplies input pixels with weights and returns
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Fig. 3. Weight-oriented dataflow

multiple partial sums. This method requires significant co-

ordinates computation to locate the sparse weights. Besides,

the partial sums are connected with different output pixels,

which bring great challenges for pipelining on FPGAs due to

complex data dependency. Cambricon-X [23] design applies

direct and step indexing technique to select the input pixels

by detecting the nonzeros. Cambricon-X performs the vector

dot product across channels by gathering the weights into a

vector, which needs to dynamically select the input vector.

This dataflow only performs parallel computation in channel

dimensions, which will lead to poor parallelism on FPGAs.

There have been dense CNNs dataflows on FPGAs [8–

10, 24, 25]. However, these dataflows will lead to invalid

multiplications caused by the redundant connections between

weights and input/ouput channels for sparse CNNs. As shown

in Figure 2, the invalid multiplications can be from spatial

kernel, input channel, and output channel dimensions, respec-

tively. The input feature maps share the same index with

the weight in the spatial kernel dimension and in the input

channel dimension. In other words, the input pixel whose index

matches the weight is needed when convolving the input with

the kernel. Besides, different kernels are connected to different

output feature maps, and the zero weight will not contribute

to the corresponding output feature map.

We propose to transform the convolution computation to

element-matrix multiplication by processing each weight as

a single element. We compress the sparse weights into two

arrays: (1) SPw array, where the nonzero weights in the same

input channel are compressed into a vector. We use the coor-

dinate list (COO) format to store sparse weights. More clearly,

each element in the vector is 5-tuple (n,r,s,value,valid)

which represents the indices and the value of the weight; (2)

NZ array, which records the number of non-zero weights in

each input channel. One input channel is processed at a time.

Figure 3 (a) shows the pseudo code of our dataflow which

consists of three steps. In the step 1, we gather the necessary

input pixels into an input tile according the position (h,w,m).
A TH ×TW tile in the output feature map is connected with

TH × TW pixels in the input feature map through a specific

weight. Given a specific kernel size and the sliding stride, a

TH ×TW tile corresponds to a TH ′ ×TW ′ tile in the input feature

map as follows,

TH ′ = R+stride×(TH −1), TW ′ = R+stride×(TW −1) (1)

The input tile slides with a vertical stride TH and a horizontal

stride TW as shown in Figure 3 (a). Step 2 is the inner

computation of our dataflow where TN weights are multiplied

with the input tile in parallel.

Figure 3 (b) presents the details of the inner computation

in the weight-oriented dataflow. Based on the position of the

weight, we select a tile of input pixels that are connected

with the weight. More clearly, given an output tile, each

weight corresponds to a certain sub-input tile determined by

the position of the weight in the kernel. For example, the value

’1’ in the top-left corner of the sparse weight multiplies with

all the 4×4 top-left tiles of input feature maps. The weights

are from different output channels. Finally, the multiplication

results will be accumulated the output pixels according to the

index (n,h,w) in Step 3.

Our dataflow and its element-matrix multiplication inner

computation has the following advantages. First, our dataflow

processes the sparse weights one by one separately. By doing

this, we can effectively exploit the sparsity and meanwhile

reduce the sparsity deconding overhead. Second, our dataflow

provides sufficient parallelism on FPGAs. More clearly, the

output pixels in the spatial kernel and output channel dimen-

sions are computed in parallel. Third, our dataflow has low

data dependency overhead. The results from Step 2 in Figure

3 are accumulated to different output pixels which have no

read-and-write conflicts.

IV. ARCHITECTURE OPTIMIZATION

In Section III, we transform the convolution operation to

element-matrix multiplication. However, implementing this

dataflow on FPGA arises two challenges. The first challenge

is to select the necessary pixels for a specific weight. A single

weight is connected to only part of the pixels in the input
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Fig. 4. Architecture overview

Fig. 5. Tile look-up table to locate the sub-input tile

feature maps, and the weight in the different position of the

kernel is connected to different input pixels, as shown in step
1 of Figure 3. Second, to ensure multiple results can be accu-

mulated to the output buffer in parallel in step 2, a dedicated

data layout is required under the hardware constraints of FPGA

memory structure (e.g., dual-port BRAM). Furthermore, the

PEs should be pipelined to increase the throughput.

Figure 4 shows the architecture overview. In Section IV-A,

we use a tile look-up table (TLUT) to match the weight and

the required input pixels. Using the tile look-up table can avoid

runtime index matching. In Section IV-B, we propose a novel

weight layout where the parallel weights are stored continu-

ously. Besides, the layout can ensure the results from the PE

array are accumulated to different output banks without data

access conflicts in the pipeline. To cooperate with the layout,

in Section IV-C, we propose a channel multiplexer (CMUX) to

locate the channel address. The channel multiplexer receives

the weight index in the sparse format and outputs which

bank the results should be accumulated to. Since the weight

distribution across output channels might be unbalanced, we

analyze the load balancing problem in Section IV-D.

A. TLUT module

As aforementioned, the weights represent the connections

between the input feature map and the output feature map.

However, when the weight is sparse, the connection loses

its structured topology. To bridge the gap between irregular

connections to input pixels and the regular PE array, we insert

a tile look-up table between the input tile and PEs. Figure

5 depicts how the weight and the input pixels are paired.

Given a position in the input feature maps and the number of

Fig. 6. Weight layout in the output channel dimension

output pixels that are computed in parallel, a region is selected

according to Equation 1. Then, we enumerate all the possible

sub-input tiles which need to be multiplied with the weights.

Clearly, when the kernel is sliding in the input tile, the weight

in a R× S kernel is connected to a set of input pixels in the

input tile. These pixels are batched together into a new tile.

When the stride is equal to 1, the selected pixels are adjacent

to each other as shown in Figure 5. There are R×S tiles in total

with R×S positions in the kernel which are stored separately

in the tile look-up table. The tile look-up table replaces runtime

index matching with a simple array indexing operation. This

helps to save the logic resources significantly since the runtime

index matching requires a large number of multiplexers. For

example, in Figure 2, the position of the red weight is (0,0)

which corresponds the red tile, and we can directly fetch the

pixels in the red tile which has been pre-fetched when the start

point (h,w,m) is determined.

B. PE design and weight layout

The PE receives the decoded weight and the selected tile

from the tile look-up table. We initiate a PE array with each

PE conducting an element-matrix multiplication operation.

In the step 2 of our dataflow, we compute multiple output

pixels from different output channels in parallel. There are TN
homogeneous PEs process multiple weights and input tiles in

parallel. Furthermore, we apply pipelining technique to our

PE design. Pipelining allows multiple operations in step 2 to

process concurrently to increase throughput, and the pipeling

efficiency is determined by the iteration interval. According

to Figure 3, the iteration interval is bounded by the weight

access bandwidth and output access bandwidth.

To enable simultaneous update of multiple output channels,

the output buffer is partitioned to TN ×TH ×TW banks where

each bank i in the channel dimension stores the weights

from the (TN × x+ i) output channel as shown in Figure 7.

Traditionally, the weights are sorted in the ascending order of

channels. If more than one weight need to be read from the

same bank, this will lead to a long read latency. To address

this problem, the weight layout is rearranged to cooperate

with the partitioned output buffers. We define the quotient and

remainder by dividing the output channel n with TN . In Figure

3, the compressed weights are stored in a 2D matrix SPw.

20



Fig. 7. Channel multiplexer to locate the output channel address

For each row in the matrix, we sort the weight according to

the remainder. Specifically, we rearrange the weights to ensure

that every consecutive TN weights have different remainders

as shown in Figure 6, so that the results from the PE array

are accumulated to the output buffers. For example, in Figure

6, 4 weights are processed in parallel. In our weight layout,

the results from the PE array need to be accumulated to the

output channel (0,5,2,7) in iteration i+ 1, whose remainder

are (0,1,2,3). In this manner, multiple write operations refer

to different banks, resulting in an improved iteration interval.

C. CMUX module

In the PE array, each PE generates a tile of results that

belong to a distinct output channel. The address that the results

need to be accumulated to is determined by the index in

the format. A channel multiplexer is inserted between the PE

array and the output buffer to locate the address as shown in

Figure 7. The channel multiplexer consists of TN input wires

which represent the number of banks in the output channel

dimension. The output channel index of weights is transferred

to the channel multiplexer, then the channel multiplexer will

output which bank the results need to be accumulated to.

D. Load balancing analysis

In our architecture, PEs strictly process TN weights with

different remainders together. However, the weights with dif-

ferent remainders cannot be evenly distributed. As a result,

the latency is always bounded by the remainder with the

maximum nonzeros. So we align the weights with invalid data

among all the remainders so that the number of weights across

different remainders is equal, as shown in Figure 8. There is

a valid signal in COO format (n,r,s,value,valid) to indicate

whether the weight is valid. The computation efficiency can

be computed as follows,

Computee f f =
# o f valid

# o f valid +# o f invalid
(2)

In the example of Figure 8, the parallelism factor TN is set

to 4, 6, 8 with a fixed number of nonzeros 28. For each

factor, the numbers of nonzeros with different remainders are

different. We align the weight with each remainder to the same

value and the grey points denote the invalid values which can

cause inefficiency. For example, when TN = 8, the computation

efficiency is 28
8×5 = 70%. In the experimental section, we will

analyze the computation efficiency using real networks.

Fig. 8. Invalid computation under proposed weight layout

Fig. 9. An uniform design different kernel size

V. IMPLEMENTATION DETAILS

A. Memory system

The on-chip memory of FPGAs is not large enough to

hold all the channels of feature maps. Hence, we load and

calculate feature maps at an unit of 128 channels. We apply

line buffer techniques to store the input and output feature

maps. There exist data reuse opportunities both horizontally

and vertically since there is overlapping when the kernel slides

across the input feature maps. Line buffer design is widely

used in previous accelerators and can effectively reuse the

input data. There are two input tiles working in a ping-pong

manner to overlap the latency of the tile look-up table and the

latency of the PE array. As shown in Figure 3, the latency of

the PE array depends on the loop count of LK and the pipeline

depth. In general, the latency of loop LK is much larger than

the latency of the tile look-up table which is a constant.

B. Uniform design

In general, the modern CNN networks contain different

kernel size. For example, Resnet has 1×1 and 3×3 kernels

in the residual block, and GoogLeNet has 1× 1, 3× 3 and

5× 5 kernels in the inception module. Since each weight is

processed independently in our dataflow, our architecture can

flexibly handle different kernel size. To unify the structure of

the tile look-up table, we transform all the kernels to the 3×3

kernel. Figure 9 shows an example that transforms the 5× 5

kernel to the 3×3 kernel. The 5×5 kernel is padded to 6×6

kernel with zeros then split into four 3×3 kernels. Note that

the splitted kernels start from different positions as shown in

Figure 9. Apart from the convolutional layers, there are other

layers in CNN models. In our architecture, we implement two

widely-used layers: pooling layer and Rectified Linear Unit

(ReLU) layer. Pooling layer outputs the maximum values in

sub-regions of input feature maps. ReLU layer sets any input

value less than zero to zero. These two layers are implemented

by introducing comparison operators when writing the results

to off-chip memory.
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TABLE II
PERFORMANCE COMPARISON WITH PREVIOUS IMPLEMENTATION

[9] [8] [11] [12] [24] Ours Ours Ours Ours

CNN type VGG VGG Resnet Alexnet Alexnet VGG Alexnet Resnet GoogLeNet

Device
Arria-10
GX1150

Arria-10
GX1150

Stratix-V
GSMD5

Stratix-V
GSD8

Zynq
ZC706

Zynq
ZCU102

Zynq
ZCU102

Zynq
ZCU102

Zynq
ZCU102

Frequency (MHz) 150 370 150 120 - 200 200 200 200

Precision 16bit fixed 32bit float 16bit fixed 16bit fixed - 16bit fixed 16bit fixed 16bit fixed 16bit fixed

DSP Utilization 1518 (100%) 1320 (87%) 1044 (66%) - - 1144 (45%) 1144 (45%) 1144 (45%) 1144 (45%)

Logic Utilization 161K (38%) 182K (43%)
45.7K
(27%)

- - 552K (92%) 552K (92%) 552K (92%) 552K (92%)

BRAM 1900 (70%) 1250 (46%) 959 (48%) - - 912 (48%) 912 (48%) 912 (48%) 912 (48%)

Performance (GOP/s) 64.5 (eff.) 128.5 (eff.) 22.6 (eff.) 11.2 (eff.) 71.2 309.0 223.4 291.4 257.4

Power (W) 45.0 41.7 25 - 9.6 23.6 23.6 23.6 23.6

Fig. 10. Resource utilization (HaWbNc means TH = a,TW = b,TN = c)

VI. EXPERIMENT

In this section, we first introduce the experiments setting. In

Section VI-B, we show the performance of our accelerator for

the state-of-the-art CNNs and compare it with previous dense

CNN FPGA accelerators. Then, we measure the resource

utilization of various configurations and analyze the utilization

breakdown. Next, we examine the hardware efficiency of

different configurations with different parallelism.

A. Experiments Setup
We evaluate our design on Xilinx ZCU102 platform.

ZCU102 consists of an UltraScale FPGA, quad ARM Cortex-

A53 processors, 500 MB DDR3. Our FPGA implementation

is operated at 200MHz frequency on this platform. To measure

the runtime power, we plugged in a power meter in the

FPGA platform. In this work, we first use Xilinx Vivado HLS

(v2017.4) tool chain to transform C code into RTL implemen-

tation. Then, we employ Xilinx SDSoC (v2017.4) to compile

the source code into bitstream. We apply [5, 6] methods to

train the CNN model with sparsity using Caffe model [26].

Specifically, we set the expected sparsity of the network by

setting the value that is less than a threshold to zero, followed

by retraining the network to regain any lost accuracy. In

our experiment, we use the state-of-the-art CNNs including

Alexnet, VGG-16, Resnet and GoogLeNet. We achieve 89.2%,

88.3%, 76.5%, 65.8% sparsity of Alexnet, VGG-16, Resnet,

GoogLeNet without accuracy loss, respectively.

B. Performance Analysis

In this section, we show the performance of our accelerator

using modern CNNs. We set the accelerator configuration as

< TH ,TW ,TN >=< 8,8,16>, which involves 1024 multipliers.

In this configuration, the peak available performance can be

computed as 2×0.2 GHz×16×8×8 = 409.6 GOP/s.

We also compare our design with previous FPGA accelera-

tors in Table II. [8, 9, 11, 12] are dense CNN accelerators

and [24] is sparse CNN accelerator. The performance in

Table II represents the effective performance. For the dense

CNN accelerators, the effective performance is computed by

multiplying the performance of dense CNNs with sparsity.

According to Table II, our implementation achieves 223.4

GOP/s effective performance on sparse Alexnet which shows

2.4x-19.9x speedup compared with [7, 24]1. The performance

on VGG network is 309.0 GOP/s which is 3.6X-4.8X higher

than [8, 9, 27]. For Resnet, our design achieves 291.4 GOP/s

which is 12.9X higher than the effective performance of [11].

On GoogLeNet, we achieve 257.4 GOP/s performance. The

speedup is because our dataflow can effectively eliminate the

useless multiplications, also, the dataflow maintains a high

utilization of on-chip resources. Previous implementations

cannot efficiently exploit the zeros in the computation, which

results in a waste of on-chip resources. On the other hand,

previous dense CNN accelerators are highly optimized and

DSPs are fully utilized to conduct multiplications. In our im-

plementation, only half DSPs are utilized, and the performance

is bounded by the logic resource.

The inefficiency of our implementation mainly comes from

three aspects. First, there exist some invalid weights in our

weight layout, which leads to imbalanced workload among

1This paper [24] only reported the performance and the platform
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Fig. 11. Computation efficiency

TABLE III
RESOURCE UTILIZATION BREAKDOWN

BRAM DSP FF LUT

Buffers 609 0 0 0

TLUT 0 0 48894 38191

PEs 0 288 1088 32

CMUX 0 24 394 43976

Others 8 52 18408 50177

Total 617(33%) 364(%14) 68784(%12) 132344(%48)

Available 1824 2520 548160 274780

PEs. Section VI-D presents the details of load imbalance

problem. Second, the feature map size in the CNN layers

cannot divide TH and TW evenly. We choose 8 × 8 as the

output tile size. Take the last convolutional layer of VGG as

an example, the feature map size is 14×14 leading to a 12.5%

waste of computation. Third, as mentioned in Section IV-B,

we apply pipeline technique in PEs. When the workload is

small after pruning, the latency of PE can be bounded by

the depth of pipeline. In our implementation, the pipeline

depth is 8 cycles. Compared with VGG network, Resnets and

GoogLeNet consist of many convolutional layers with 1× 1

kernels, leading to low performance. The speedup of VGG-16

is higher than that of Alexnet, because VGG-16 is a structured

and regular network. The kernel size of all layers is 3× 3,

however, Alexnet contains many layers in different types.

C. Resource Utilization Characteristics

Table III shows the resource utilization breakdown with the

configuration (TH = TW = 6,TN = 8). Block RAMs (BRAM)

are mainly used to construct the buffers. The parameters TH
and TW determine the number of input line buffers. The

parameter TN determines the number of weight buffers. The

parameters TH , TW and TN determine the number of output line

buffers. Each DSP can perform a 16bit ×16bit multiplication

operation. The number of DSPs used for the PE array can be

calculated as TH ×TW ×TN . Both CMUX and TLUT consume

the logic resources. CMUX module first uses DSPs to calculate

the output channel number according to the index then output

which BRAM the results needs to be accumulated to. The

size of CMUX depends on how many weights are computed

in parallel (TN). TLUT module is constructed by the LUT and

flip-flop (FF) on FPGA. In our design, TLUT has a constant

number of input wires since we unify the kernel size to 3×3.

Besides, TLUT module needs registers to store all possible

sub-input tiles which are implemented using FF. The LUT

utilization of TLUT module is a constant and the FF utilization

depends on the tile size TH ×TW .

Figure 10 shows the resource utilization of different config-

urations obtained from Xilinx Vivado tool (v2017.4). In Figure

10, the LUT utilization increases as the parallelism factor

TN increases because of CMUX. The utilization of BRAMs

is mainly determined by the parallelization degree of feature

maps (TH ,TW ). When TN is small, BRAM utilization is similar.

This indicates that the consumption of BRAM is determined

by the input and output data size, instead of the partition

factors. We also observe that the FF utilization is almost linear

to the tile size.

D. Computation efficiency

In our implementation, the PE array processes PN weights

with different remainder at the same time. However, the

remainder distribution is irregular which can result in load

imbalance problem as discussed in Section IV-D. Figure 8

shows the efficiency across different layers with different par-

allelism factors. We find that the format efficiency decreases

when the modular factor TN becomes larger. Because a large

TN will bridge the gap between the maximum number of

valid value and the average number of valid value among

different remainders. We find that the efficiency increases as

the network goes deeper. This because the number of channels

increases as the network goes deeper, which makes the total

number of nonzeros larger. A large number of nonzeros

can compensate the gap between the maximal and minimal

number of remainders. Also, we observe that the computation

efficiency of GoogLeNet and Resnet is much higher. This

is because the sparsity of these two networks is relatively

small which leads to a large number of nonzeros. Besides,

the computation efficiency of some layers in GoogLeNet is

low. Because the channel number cannot be divided evenly by

TN . For example, the output channel number of inception 4b

layer in GoogLeNet is 24 which is not a multiple of TN = 16.

In conclusion, our dataflow can maintain high computation

efficiency for different configurations and networks.

E. Scalability and comparison with GPU

We also test our design on ZC706 platform to demonstrate

the scalability. Our implementation is operated at 166MHz fre-
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TABLE IV
COMPARISON WITH GPU PLATFORM USING RESNET

Device TitanX1 TitanX2 ZC706 ZCU102
Technology 28 nm 28 nm 28 nm 16 nm

Frequency (MHz) 1075 1075 166 200

Precision 32bits float 32bits float 16bits fixed 16bits fixed

conv average
(GOP/s) 212(eff.) 119 134 291

Power (W) 130 134 9.4 23.6

Energy efficiency
(GOP/s/W) 1.63 0.88 12.66 12.33

1 The sparse network is considered as the dense network and accelerated
using CuDNN.

2 The sparse network is accelerated using CuSparse.

quency on this platform. ZC706 has 900 DSPs, 1090 BRAMs

and 305K logic cells. We set the configuration parameter as

(TH = TW = 8,TN = 8) and achieve 134.2 GOP/s on Resnet

which means our design can be scaled to different platforms.

Besides, we conduct a comparison between GPU and FPGA

platforms. We measure the performance of dense Resnet using

the latest CuDNN on NVIDIA TitanX platform. To make a

fair comparison, we also apply CuSparse library to accelerate

sparse Resnet. The sparse version shows a lower performance

because of the memory uncoalesing problem. In conclusion,

our design shows 1.37X speedup and 7.56X energy-efficiency

compared with TitanX platform.

VII. RELATED WORK

Architecture for dense CNNs on FPGAs. Prior efforts to

accelerate CNNs have shown substantial successes on FPGAs.

Ma [9] et al. make an in-depth analysis of loop optimization

techniques in spatial convolution, which includes loop tiling,

loop unrolling and loop interchange. Zhang [8] et al. focus

on reducing the on-chip memory bandwidth requirement. [13]

proposed a novel Concatenate-and-Pad (CaP) technique, which

improves OaA significantly by reducing the wasted computa-

tion on the padded pixels. Wei et al. [15] implemented CNN on

an FPGA using a systolic array architecture, which can achieve

high clock frequency under high resource utilization. Zhang et

al. [14] proposed AccDNN tool which included high-quality

RTL network layer IPs, a fine-grained layer-based pipeline

architecture and an automatic design space exploration tool.

Besides, there are some works that implement fast algorithms

to further accelerate CNNs [25, 28–33].

Architecture for sparse CNNs on ASICs. Recently, some

works explore the dataflow and architecture to accelerate

sparse CNNs on ASICs. Han et al. [34] proposed EIE CNN

accelerator which exploits sparsity both in input feature maps

and filters but only focused on the fully-connected layer. The

fully-connected layer is computed using matrix multiplication,

in EIE design, the matrix is stored in CSC format and multiple

columns are computed in parallel. Parashar et al. proposed

SCNN accelerator with a dataflow named PT-IS-CP (planar-

tiled input-stationary Cartesian-product) [22]. Zhang et al.

[23] presented Cambricon-X accelerator which applies step

indexing techniques. In Cambricon-X design, the nonzeros

in the same row is divided into multiple segments with the

same size in subsequent addresses. And the row that contains

nonzeros less than the size will be aligned to the size. In

recent years, some ASIC accelerators apply hardware-software

design that prune the weight with structured pattern [19–21].

VIII. CONLUSION

In this work, we propose an FPGA accelerator for sparse

CNNs. We first propose a weight-oriented dataflow that ex-

ploits element-matrix multiplication. Based on this dataflow,

we design an FPGA architecture mainly composed of a tile

look-up table and a channel multiplexer. Besides, we propose

a weight layout where the weights calculated in parallel are

stored continuously. To cooperate with the weight layout, a

channel multiplexer is inserted to locate the address which

can ensure no data access conflict. Experiments demonstrate

that our accelerator can achieve 223.4-309.0 GOP/s for the

modern CNNs on Xilinx ZCU102, which provides a 2.4x-

12.9x speedup over previous dense CNN FPGA accelerators.
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