
2872 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Joint Task Assignment, Transmission, and
Computing Resource Allocation in Multilayer

Mobile Edge Computing Systems
Pengfei Wang , Student Member, IEEE, Chao Yao , Member, IEEE, Zijie Zheng , Student Member, IEEE,

Guangyu Sun, Member, IEEE, and Lingyang Song , Senior Member, IEEE

Abstract—In this paper, we propose a multilayer data flow
processing system, i.e., EdgeFlow, to integrally utilize the com-
puting capacity throughout the whole network, i.e., the cloud
center (CC) on the top layer, the mobile edge computing (MEC)
servers on the middle layer, and the edge devices (EDs) on the
bottom layer. To realize the efficient data processing in EdgeFlow,
we optimally assign the tasks to multiple layers, and allocate the
wireless transmission resources between the MEC servers and
EDs as well as the wired transmission resources between the
CC and MEC servers. We prove that the system is naturally
classified into two states, the nonblocking state and the blocking
state, according to various data generation speed at the EDs.
The system latency is minimized for the nonblocking state even
though the problem is nonconvex. As for the blocking state, the
recovery time is minimized through solving a min-max problem.
Based on the analytical results, the EdgeFlow system is imple-
mented on the universal software radio peripheral and the Intel
next units of computing. A typical Internet of Things application,
photo recording and face recognition, is used for the simulation
and the experiment, and indicates that the EdgeFlow can achieve
a low latency and recovery time than the previous distributed
frameworks, e.g., the Cloudlet and the Markov decision process.

Index Terms—Internet of Things (IoT), mobile edge computing
(MEC), resource allocation, task assignment.

I. INTRODUCTION

W ITH the increasing number of electronic and intelli-
gent devices connected in modern lives, the Internet of

Things (IoT) has attracted broad attentions in both the indus-
trial and the academic fields [1], [2]. Generally, the IoT is
defined as the network of interconnected devices embedded
with electronics and sensors [3], [4]. The potentialities offered
by the IoT enable the development and the automation of a
huge number of applications in the fields of transportation,
healthcare [5], smart environment [6], [7], etc. Some of them
require a very low latency for response, while some may gen-
erate large quantities of data intermittently, resulting in heavy
loads to the IoT network [8]. As predicted, there will be

Manuscript received July 11, 2018; revised October 2, 2018; accepted
October 11, 2018. Date of publication October 16, 2018; date of current
version May 8, 2019. This work was supported by the National Nature
Science Foundation of China under Grant 61625101. (Corresponding author:
Lingyang Song.)

The authors are with the School of Electronics Engineering and
Computer Science, Peking University, Beijing 100871, China (e-mail:
wangpengfei13@pku.edu.cn; chao.yao@pku.edu.cn; zijie.zheng@pku.edu.cn;
gsun@pku.edu.cn; lingyang.song@pku.edu.cn).

Digital Object Identifier 10.1109/JIOT.2018.2876198

50 billion IoT devices connected to the Internet by 2020 [9].
Countless connected IoT devices will generate the massive
data continuously, resulting in two main challenges.

1) Large amount of raw data and computing tasks need to
be processed, while the computing capacity of each IoT
device is limited.

2) A huge volume of data needs to be transmitted through
the network with a low latency to fulfill the requirements
of the real-time tasks [10], [11], while both the wireless
and the wired transmission resources are inadequate in
the networks.

A. Basic Concept in Cloud and Edge

In order to process a large amount of raw data, the cloud
computing and mobile edge computing (MEC) are introduced,
utilizing the computing capacity of the cloud center (CC) and
MEC servers, respectively.

Cloud computing has been proposed to take use of the
strong computing capacity in the data centers to process the
data delivered from the IoT devices [12], however, it is not
scalable or efficient for the IoT services due to the following
reasons. The cloud computing usually needs a long link to
deliver large quantities of raw data from the IoT devices to
the CC, which results in huge transmission pressure over the
limited frequency bandwidth. This may not fulfill some IoT
applications. For example, in the scenario of an autonomous
driving vehicle, one Gigabyte data needs to be processed in
time for error-free decisions for driving safety [13], however,
the latency of the cloud computing is too large to transmit the
raw data.

To reduce the transmission time between the IoT devices
and the cloud, the MEC has been proposed [14], defined
as providing Internet service environment and enabling the
computation to be performed at the edge of the mobile net-
work [15], where the term “edge” refers to any computing
and network resources between data sources and CCs [16].
The edge has the computing capacity, offering an opportu-
nity to offload part of the computing tasks from the CC to
the edge, which can evidently help to reduce the transmission
time. Cloudlet is an early implementation of the edge com-
puting platform [16]–[18], where the computing tasks are sent
to the nearest deployed servers rather than the remote CC so
that the transmission delay is significantly reduced. Moreover,

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5819-7369
https://orcid.org/0000-0001-6291-7007
https://orcid.org/0000-0001-7622-0470
https://orcid.org/0000-0001-8644-8241

WANG et al.: JOINT TASK ASSIGNMENT, TRANSMISSION, AND COMPUTING RESOURCE ALLOCATION IN MULTILAYER MEC SYSTEMS 2873

the real-time applications, such as the assisted driving can
obtain a shorter response time by applying MEC [19], [20].
Compared to cloud computing, the MEC enables proximity
services with low latency and location awareness, bringing
about small payload of transmission [21], [22].

B. Coupled Task Assignment, Transmission, and
Computing Resource Allocation

Only relying on the cloud computing results in the addi-
tional long transmission time and huge transmission pressure,
while the processing capacity of only MEC is still limited for
those IoT applications with huge data volume [23]–[25], [30].
Hence, it is essential to combine the strong computing capac-
ity of the cloud computing and the close-distance advantage
of the MEC. In the unified system, we need to make full use
of the transmission1 and computing2 resources in both cloud
and edge. In order to optimally utilize these resources, the task
generated at the ED can be split and assigned to the CC, MEC
server or local, and thus, an overall task assignment strategy
is called for.

Most existing works only discuss the task assignment
[26], [27], some together with transmission resource alloca-
tion [28]–[30] or computing resource allocation [31], [32].
However, the three aspects are not considered jointly or the
relationship between them is ignored. An MDP approach is
proposed in [27], which schedules the computation tasks based
on the queueing and the transmitting or processing execu-
tion state. The transmission resource allocation for multiuser
mobile edge computational offloading constrained by the com-
putation latency is studied in [28] and [29], and Guo et al. [30]
discussed it in the ultradense IoT networks. However, the allo-
cation of the computing resource is not taken into account.
Ko et al. [31] analyzed the transmission latency and computa-
tion latency separatively with different mobile device density,
taken the task assignment and computing rate control into con-
sideration. The energy harvesting is studied in the computation
latency constrained task assignment problem in [32], in order
to minimizing the power consumption of the MEC server.

The task assignment, transmission, and computing resource
allocation are coupled with close relationship, for the task
assignment decision is directly influenced by the trans-
mission and computing resource allocation, constrained by
both the transmission latency and the computation latency.
Unfortunately, the existing works in cloud computing or edge
computing do not jointly consider the three closely correlated
aspects, where only one or two aspects are taken into account.

C. Our Contribution

In this paper, we propose a multilayer data flow processing
system, named by EdgeFlow. We combine the strong comput-
ing capacity of the CC and the close-distance advantage of the
MEC, to integrally utilize the computing capacity throughout

1The transmission resources include the wired transmission resource of the
CC and the wireless transmission resource of the MEC servers, referring to
time, frequency or power resources.

2The computing resources refer to the computing rate of the CC, MEC
server or ED.

the whole network, i.e., the CC on the top layer, the MEC
servers (or the APs) on the middle layer, and the IoT EDs
on the bottom layer. There are two main challenges to design
such a unified scheme or a system.

1) The task assignment on the different layers and different
nodes are highly correlated with the computing and the
transmission resources allocation.

2) The volume of data varies with time and IoT applica-
tions, and thus the task assignment strategy and resource
allocation scheme need to be adjusted according to the
data generation speed. Furthermore, due to the lim-
ited computing capacity and transmission resources of
the network, the system may be blocked when large
amount of data pours into the network, causing a
complicated case.

In order to realize the data processing task, in EdgeFlow,
we optimally assign the tasks on multiple layers and allocate
both the wireless transmission resources between the EDs and
the MEC servers as well as the wired transmission resources
between the MEC servers and the CC. We prove that the sys-
tem will be naturally classified into two states, the nonblocking
state and the blocking state, according to various data gener-
ation speed on the EDs. A latency minimization algorithm
is proposed for the nonblocking state to minimize the total
latency even though the problem is nonconvex. As for the
blocking state, the recovery time is minimized through solv-
ing a min-max problem. Based on the analytical results, the
EdgeFlow system is realized and implemented on the universal
software radio peripheral (USRP) and the Intel next units of
computing (Intel-NUCs), where the demo code in the second
version can be found in [36]. A typical IoT application, photo
recording and face recognition are used to for the simulation
and the experiment.

The main contributions and results of this paper are sum-
marized as below.

1) We propose the EdgeFlow system for IoT applications,
which is a multilayer data flow processing system com-
bining the cloud and edge, making full use of the
computing and transmission resources of the whole
network.

2) We jointly consider the transmission, computing
resource allocation, and task assignment in our system,
and derive the clear relationship between the task assign-
ment strategy, the transmission, and computing resource
allocation.

3) We point out the network can be classified into two
states, the nonblocking state and the blocking state,
according to various data generation speed on the EDs.
We clearly derive the quantitive boundary between the
two states.

4) As far as we know, we are the first to quantitively
define and describe the different objectives that should
be considered for different states. For the nonblocking
state, we can minimize the total latency even though
the problem is nonconvex. However, for the blocking
state, we minimize the recovery time since the total
latency is meaningless. Algorithms for both states are
designed.

2874 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 1. Three-layer EdgeFlow architecture.

5) In the experiment, the EdgeFlow can achieve a low total
latency and recovery time than the previous distributed
frameworks and the systems, such as the Cloudlet and
the MDP.

The rest of this paper is organized as follows. In Section II,
the model of the three-layer EdgeFlow system is described.
In Section III, we present the judgement of the system states,
the blocking state, and the nonblocking state. We formulate the
latency minimization problem in the nonblocking state and the
recovery time minimization in the blocking state. Algorithms
for the two optimization problems in the nonblocking and
blocking state are designed in Section IV. Finally, we present
the implementation of the EdgeFlow system in Section VI. The
simulation results as well as the experiment results are given
in Section VII. The conclusions are drawn in Section VIII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a general communication
network, with one CC, N APs, and M EDs. The EDs connect
with the AP via wireless communication, while the APs con-
nect with the CC through the wired links. We assume that each
ED can connect at most one AP, and each AP can connect at
most one CC. Each node in the network possesses a certain
amount of computing capacity. The raw data is generated at
the EDs in the IoT applications and the results of the data
processing must be aggregated at the CC.3 The downlink of

3That is to say, we only consider an uplink IoT network. More complicated
networks are left for future work.

the network is not considered in our scenario, since it is not
necessary for the IoT scenario. In IoT applications, we focus
on the collection and processing of the data generated at the
IoT devices, i.e., the uplink. The processing of the raw data
can be performed at any layer from the EDs to the CC, and the
percentage of the data to process at each layer is adjustable.
Moreover, once the data is processed at the edge of the net-
work, i.e., at the ED or AP, only the results with the smaller
size rather than the raw data need to be forwarded to the CC.
In the rest of this part, we provide the details of the CC, the
APs and the EDs.

A. Edge Device

The EDs on the bottom layer are responsible for generat-
ing the raw data, which usually include IoT devices, e.g., the
mobile phones, cameras, and other sensors. The ED processes
part of the raw data, and delivers the rest raw data together
with the processing results to the AP via wireless link. Let λ

j,i
ED

denotes the data generation speed of ED i connected with AP
j (1 ≤ j ≤ N, 1 ≤ i ≤ M), and ρ denotes the compression
ratio after the data processing. The ED i connected with AP
j can process part of the raw data, and sj,i

ED represents its task
division percentage, which satisfies that

0 ≤ sj,i
ED ≤ 1. (1)

The computing capacity and the wireless transmitting capacity
of ED i connected with AP j per unit time is denoted by θ

j,i
ED

and φ
j,i
ED, respectively. The computing data volume is limited

by its computing capacity

λ
j,i
EDsj,i

ED ≤ θ
j,i
ED. (2)

The transmitting data volume is limited by the wireless trans-
mitting capacity of ED i, which is closely related with the
wireless transmission resources allocated by AP j

ρλ
j,i
EDsj,i

ED + λ
j,i
ED

(
1 − sj,i

ED

)
≤ φ

j,i
ED (3)

where the first part is the processing results, and the second
part represents the remaining raw data to transmit. The total
transmitting data volume of all EDs connected with AP j is
linearly constrained by the wireless transmission resources of
AP j, denoted by φ

j
AP, which can be expressed by

M∑
i=1

φ
j,i
ED ≤ φ

j
AP. (4)

Remark 1: The constraints in (4) can describe some wire-
less resources that influence the wireless data rate in a linear
manner, for example, the spectrum and time resources. The
power and the antenna resources cannot be modeled and
discussed in the similar way, which are left in the future works.

B. Access Point

Being the middle layer of the three-layer EdgeFlow model,
APs, including base stations, WiFi APs, and so on, receive
the raw data and the processing results from the connected
EDs. After processing part of the receiving raw data, the AP

WANG et al.: JOINT TASK ASSIGNMENT, TRANSMISSION, AND COMPUTING RESOURCE ALLOCATION IN MULTILAYER MEC SYSTEMS 2875

forwards the rest raw data together with the processing results
of both the AP and EDs to the CC.

Considering that the raw data generated at ED i is trans-
mitted to AP j, the equivalent raw data arriving speed at AP j
can be calculated by

λ
j,i
AP = φ

j,i
ED · 1 − sj,i

ED

1 − sj,i
ED + ρsj,i

ED

(5)

where φ
j,i
ED is the total data arriving speed to AP j from ED i,

and only part of it is the raw data arriving speed. The raw data
volume transmitted to AP j from ED i is λ

j,i
ED(1−sj,i

ED), and the
processed data volume is λ

j,i
EDρsj,i

ED, therefore, the ratio of raw
data in the total arriving data is (1 − sj,i

ED)/(1 − sj,i
ED + ρsj,i

ED).
Accordingly, the processed data transmitted from ED i to AP
j can be expressed by

β
j,i
AP = φ

j,i
ED · ρsj,i

ED

1 − sj,i
ED + ρsj,i

ED

. (6)

The AP can also process part of the received raw data, and
sj,i

AP denotes the task division percentage of AP j for the data
from ED i (1 ≤ j ≤ N, 1 ≤ i ≤ M), which satisfies that

0 ≤ sj,i
AP ≤ 1. (7)

The computing capacity and the wired transmitting capacity
of AP j for the task from ED i per unit time is denoted by
θ

j,i
AP and φ

j,i
AP, respectively. The computing data volume of AP

j for the task from ED i is limited by the computing capacity
allocated to the ED

λ
j,i
APsj,i

AP ≤ θ
j,i
AP. (8)

Moreover, the total computing capacity allocated to differ-
ent EDs is no larger than the computing capacity of AP j,
expressed by

M∑
i=1

θ
j,i
AP ≤ θ

j
AP (9)

where θ
j
AP denotes the computing capacity of AP j.

The transmitting data volume of AP j is limited by its wired
transmitting capacity, which is closely related with the wired
transmission resources allocated by the CC

ρλ
j,i
APsj,i

AP + λ
j,i
AP

(
1 − sj,i

AP

)
+ β

j,i
AP ≤ φ

j,i
AP. (10)

The data to be transmitted to the CC includes three parts. The
first part ρλ

j,i
APs(j)

AP is the processed data of the AP j, the second
part λ

j,i
AP(1 − sj,i

AP) is the remaining raw data to transmit, and
the third part β

j,i
AP is the processed data delivered from the

EDs. All the three parts need to be transmitted to the CC,
which is limited by the allocated wired transmitting capacity
φ

j,i
AP of AP j. Moreover, the total transmitting data volume of

all APs is limited by the wired transmission resources of the
CC, denoted by φCC, which can be expressed by

N∑
j=1

M∑
i=1

φ
j,i
AP ≤ φCC. (11)

C. Cloud Center

The CC collects the data from APs via wired links. All raw
data delivered to the CC is processed and the whole results
are forwarded to the user who generates the task. Moreover,
the CC determines the task assignment strategy of the whole
network, that is, the task division percentage at each AP and
ED.

The equivalent raw data arriving speed at the CC forwarded
by AP j for the task from ED i can be calculated by

λ
j,i
CC = φ

j,i
AP ·

(
1 − sj,i

AP

)

1 − sj,i
AP + ρsj,i

AP + ρsj,i
ED

1−sj,i
ED

. (12)

The arriving data at the CC include three parts: 1) the remain-
ing raw data; 2) the processing results of the APs; and 3) the
processing results of the EDs. The raw data arriving speed
is proportional to the remaining raw data volume percentage
in the arriving data. Moreover, the computing capacity allo-
cated by the CC to the task transmitted from AP j and ED i
is denoted by θ

j,i
CC.

We summarize the whole data processing as follows: the
whole task flow starts from the generation of the data at the
EDs and ends at finishing processing at the CC. After being
generated at the EDs, part of the raw data are processed at the
EDs, and the processing results together with the remaining
raw data are transmitted to the APs. Once receiving the data
from the corresponding EDs, the APs offload a part of the raw
data to process, and deliver the left raw data, the processing
results of themselves as well as the received processing results
of the EDs to the CC. The CC will process the remaining raw
data and aggregate the processing results at different layers.
During the processing and transmitting, the task assignment
strategy s, the computing capacity each AP to the tasks from
different EDs, θ

i,j
AP, the computing capacity of the CC allocated

to the data delivered by different APs from EDs, θ
j,i
CC, the

wireless transmission resources allocation φ
j,i
ED and the wired

transmission resources allocation, φ
j,i
AP, can all be adjusted. The

adjustment of the aforementioned variables will be analyzed
in the next section.

III. PROBLEM FORMULATION

In this section, we first clarify the system can be natu-
rally classified into the blocking state and nonblocking state
and quantitively derive the boundary of two states. Then. we
formulate objectives for both states, respectively.

A. System State Judgement

The total computing capacity of each node, the total wire-
less transmission resources of each AP, and the total wired
transmission resources of the CC in our EdgeFlow model are
finite, however, the data generation speed can vary related to
the IoT applications, which can even reach a very high speed.
Therefore, there is an intuition that when the data generation
speed at the EDs exceeds a certain bound, the whole network
cannot follow up the data generation speed and the data will

2876 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

accumulate in the buffer of the nodes.4 We define the blocking
state as follows.

Definition 1: The blocking state is the state that no mat-
ter how the system adjusts its computing and transmission
resources allocation or adjusts the task division on every node,
the data will accumulate in the buffer at least one node.

We then derive the boundary between the nonblocking state
and the blocking state. Specifically, the nonblocking system
indicates that each layer is nonblocking. Thus, we provide the
nonconditions of the EDs, the APs, and the CC, respectively.

1) Nonblocking Conditions of the ED Layer: Since the
wireless transmission resources allocated to each ED is deter-
mined by its connected AP, the blocking of the ED layer is
judged by the AP. The ED layer blocks when the offloaded
data volume surpasses the computing capacity of the ED, or
the transmitting capacity of the AP is insufficient to support
the data transmission from all EDs. We consider the case that
all EDs fully use their computing capacity, expressed by

λ
j,i
EDsj,i

ED = θ
j,i
ED, ∀1 ≤ j ≤ N, 1 ≤ i ≤ M (13)

which implies that the transmission pressure of the ED is
minimum. Under the aforementioned circumstance, if the
transmission resources of the AP cannot support the data trans-
mission of all connected EDs, the ED layer will block. Hence,
the nonblocking conditions for transmitting are expressed
in (3) and (4), when (13) is satisfied.

2) Nonblocking Conditions of the AP Layer: Similarly with
EDs, the wired transmission resources allocated to each AP is
determined by the CC. The AP layer blocks when the offloaded
data volume surpasses the computing capacity of the AP, or
the transmitting capacity between the AP layer and the CC
is insufficient for the data transmission from all APs. We
also consider the case that all APs fully use their computing
capacity, expressed by

λ
j,i
APsj,i

AP = θ
j,i
AP, ∀1 ≤ j ≤ N, 1 ≤ i ≤ M (14)

which implies that the transmission pressure of the AP is min-
imum. Under the aforementioned circumstance, the computing
is nonblocking when (9) is satisfied, representing that the total
computing capacity allocated to the connected EDs is no more
than the computing capacity of the AP. If the allocated wired
transmission resources of the AP cannot support its data trans-
mission, or the wired transmission resources of the CC cannot
support the data transmission of all APs, the AP layer will
block in the transmission. Hence, the nonblocking conditions
for transmitting are expressed in (10) and (11), when (14) is
satisfied.

3) Nonblocking Conditions of the CC Layer: The CC need
to process all remaining raw data transmitted from APs.
Hence, the nonblocking conditions of computing at the CC
is

λ
j,i
CC ≤ θ

j,i
CC (15)

4The space of the buffer in each node is viewed as infinite, that is, the
data only accumulates in the buffer and no data loss happens when the node
blocks.

N∑
j=1

M∑
i=1

θ
j,i
CC ≤ θCC (16)

where (15) represents that the computing capacity allocated
by the CC to each task should be able to process the received
raw data, and (16) implies that the sum of allocated computing
capacity to each task is no more than the total computing
capacity of the CC.

Summarizing the nonblocking conditions for the EDs, the
APs, and the CC, we have Proposition 1 to clarity the boundary
between the nonblocking state and the blocking state.

Proposition 1: The EdgeFlow system is nonblocking if and
only if the constraints that (1), (3), (4), (7), (9)–(11), (13)–(16)
are satisfied.

B. Nonblocking State: Latency Minimization

In the nonblocking state, we address a general objective in
edge computing system: to minimize the system latency. The
latency of a task is defined as the sum of the computing time
and transmitting time from the ED layer to the CC.

When the data is processed at ED i, the latency for the data
with the unit size can be calculated as follows:

Lj,i
ED = 1

θ
j,i
ED

+ ρ

φ
j,i
ED

+ ρ

φ
j,i
AP

. (17)

The first term is the processing time for the data at the ED, the
second term is the transmission time between the ED and AP,
and the third term is the transmission time between the AP
and CC. Since the data is processed at ED i, only the results
with compressed ratio, ρ, need to be transmitted.

When the data is processed at AP j, the latency for the data
with the unit size can be calculated as follows:

Lj,i
AP = 1

φ
j,i
ED

+ 1

θ
j,i
AP

+ ρ

φ
j,i
AP

. (18)

The first term is the transmission time between the ED and
AP, the second term is the processing time for the data at the
AP, and the third term is the transmission time between the AP
and CC. Since the data is processed at AP j, only the results
with compressed ratio, ρ, need to be transmitted to the CC.

When the data is processed at the CC, the latency for the
data with the unit size can be calculated as follows:

Lj,i
CC = 1

φ
j,i
ED

+ 1

φ
j,i
AP

+ 1

θ
j,i
CC

. (19)

The first term is the transmission time between the ED and
AP, the second term is the transmission time between the AP
and CC, and the third term is the processing time for the data
at the CC.

Definition 2: The system latency is the total latency of all
tasks created at the EDs per unit time.

Considering the task produced at ED i, the data generation
speed of which is λ

j,i
ED, the task division percentage at ED

i, AP j and the CC is sj,i
ED, sj,i

AP and sj,i
CC = 1 − sj,i

ED − sj,i
AP,

respectively. Therefore, the system latency of all links can be
formulated as

L =
N∑

j=1

M∑
i=1

(
λ

j,i
ED ·

[
sj,i

EDLj,i
ED + sj,i

APLj,i
AP + sj,i

CCLj,i
CC

])
. (20)

WANG et al.: JOINT TASK ASSIGNMENT, TRANSMISSION, AND COMPUTING RESOURCE ALLOCATION IN MULTILAYER MEC SYSTEMS 2877

Fig. 2. Pipeline of the data processing and transmitting.

Hence, the total latency minimization problem in the non-
blocking state can be formulated as

min
s,θ ,φ

L (21)

s.t. (1), (3), (4), (7), (9)−(11), (13)−(16).

C. Blocking State: Recovery Time Minimization

In the blocking state, the historical data has already accu-
mulated in the buffer, and thus, the new generated data cannot
be processed until accumulated data is processed. Thus, we
have the following remark.

Remark 2: The system latency in the blocking state is
meaningless since the data is no longer the real-time data.

When the network is blocking, the primary target is nat-
urally set to process the historical data in the buffer and let
the network recover to be nonblocking state as far as possible
when the data generation speed slows down. We aim to min-
imize the time of clearing the buffer from the perspective of
the whole system.

In the rest of this part, we will quantitively formulate the
recovery time minimization.

There are five stages for the data from the time it generates
at the EDs to the time it arrives at the CC.

1) Processing at Each ED: The processing time of ED i
connected with AP j can be expressed by

Tj,i
ED = λ

j,i
EDsj,i

ED

θ
j,i
ED

. (22)

2) Transmitting to Each AP: The data to be transmitted to
the AP includes the data processed at the ED and the
remaining raw data. The transmitting time from ED i to
AP j is denoted by

tj,iED =
ρλ

j,i
EDsj,i

ED + λ
j,i
ED

(
1 − sj,i

ED

)

φ
j,i
ED

. (23)

3) Processing at Each AP: The processing time of AP j is
denoted by

Tj
AP =

(∑M
i=1 λ

j,i
AP

)
sj

AP

θ
j
AP

(24)

where sj
AP denotes the equivalent task assignment per-

centage at AP j without regards to the data source.

4) Transmitting to the CC: The data to be transmitted from
the AP to the CC consists of the data processed at the
ED and AP as well as the remaining raw data. The
transmitting time from AP j to the CC is represented
by

tjAP =
(∑M

i=1 λ
j,i
AP

)(
1 − sj

AP + ρsj
AP

)
+∑M

i=1 β
j,i
AP

φ
j
AP

.

(25)

5) Processing at the CC: The processing time of the CC is
denoted by

TCC =
∑N

j=1
∑M

i=1 λ
j,i
CC

θCC
. (26)

In the high load situation, the aforementioned five stages
can be viewed as a pipeline, as shown in Fig. 2, and thus, the
longest time among the five stages is the bottleneck for the
system to recover from the blocking state.

Definition 3: The recovery time is the longest time among
the processing time at the EDs, the APs and the CC, as well
as the transmission time to the APs and the CC.

Therefore, the recovery time can be expressed by

Tr = max
1≤i≤M,1≤j≤N

{
Tj,i

ED, tj,iED, Tj
AP, tjAP, TCC

}
. (27)

The recovery time minimization problem can be formulated
as follows:

min
s,θ ,φ

Tr, (28)

s.t. Tr > 1.

(4), (9), (11), (16). (28a)

The constraint (28a) implies that the recovery time is larger
than a unit time, which indicates the system is blocking. Other
constraints represent that the allocated computing capacity or
wireless transmission resources to EDs cannot surpass the
those of the AP, and the allocated wired transmission resources
to APs cannot surpass that of the CC.

IV. NONBLOCKING STATE: LATENCY

MINIMIZATION ALGORITHM

In this section, we design the task assignment and resource
allocation algorithm for the latency minimization problem in
the nonblocking state. When the EdgeFlow system is in the
nonblocking state, we aim to minimize the system latency, as
described in (21), which is nonconvex. The latency can be
rewritten as

L(s, θ ,φ) =
N∑

j=1

M∑
i=1

λ
j,i
ED ·

(
sj,i

ED

θ
j,i
ED

+ sj,i
AP

θ
j,i
AP

+ sj,i
CC

θ
j,i
CC

)

+
N∑

j=1

M∑
i=1

λ
j,i
ED · ρsj,i

ED + sj,i
AP + sj,i

CC

φ
j,i
ED

+
N∑

j=1

M∑
i=1

λ
j,i
ED · ρsj,i

ED + ρsj,i
AP + sj,i

CC

φ
j,i
AP

. (29)

2878 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

By utilizing the Cauchy–Schwarz inequality [33], (29) can
be divided into several subproblem with the task assignment
strategy s, computing capacity allocation θ , and transmitting
capacity allocation φ separated. We consider that no spare
computing capacity or transmission resource is left, i.e., the
equalities are satisfied in (4), (9), and (11).

Hence, we can obtain the following inequation:

L(s, θ , φ) ≥ Lm(s)

=

[∑N
j=1

∑M
i=1

(√
λ

j,i
EDsj,i

ED +
√

λ
j,i
EDsj,i

AP +
√

λ
j,i
EDsj,i

CC

)]2

�total

+

(∑N
j=1

∑M
i=1

√
λ

j,i
ED

(
ρsj,i

ED + sj,i
AP + sj,i

CC

))2

�wireless

+

(∑N
j=1

∑M
i=1

√
λ

j,i
ED

(
ρsj,i

ED + ρsj,i
AP + sj,i

CC

))2

�wired

(30)

where

�total =
N∑

j=1

M∑
i=1

θ
j,i
ED +

N∑
j=1

θ
j
AP + θCC (31)

�wireless =
N∑

j=1

φ
j
AP (32)

�wired = φCC. (33)

Proposition 2: The inequality in (30) is transformed into an
equation if and only if the following conditions are satisfied:

θ
j,i
ED

θ
j′,i′
ED

=
√

λ
j,i
EDsj,i

ED√
λ

j′,i′
ED sj′,i′

ED

θ
j,i
ED : θ

j,i
AP : θ

j,i
CC =

√
λ

j,i
EDsj,i

ED :
√

λ
j,i
EDsj,i

AP :
√

λ
j,i
EDsj,i

CC

φ
j,i
ED

φ
j′,i′
ED

=

√
λ

j,i
ED

(
ρsj,i

ED + sj,i
AP + sj,i

CC

)

√
λ

j′,i′
ED

(
ρsj′,i′

ED + sj′,i′
AP + sj′,i′

CC

)

φ
j,i
AP

φ
j′,i′
AP

=

√
λ

j,i
ED

(
ρsj,i

ED + ρsj,i
AP + sj,i

CC

)

√
λ

j′,i′
ED

(
ρsj′,i′

ED + ρsj′,i′
AP + sj′,i′

CC

)

∀1 ≤ j, j′ ≤ N, 1 ≤ i, i′ ≤ M. (34)

The equations in (34) imply that the computing capacity divi-
sion and transmission resources allocation, θ and φ, can be
derived once the task assignment division percentage, s, is
determined.

Hence, the latency minimization problem (21) can be
converted into

min
s

Lm(s) (35)

s.t. (1)−(4), (7)−(11), (15)−(16)

(31)−(34).

Algorithm 1 Latency Minimization Algorithm

Input: Computing capacity θ
j,i
ED, θ

j
AP, θCC , wireless transmission

resources of each AP φ
j
AP, wired transmission resources φCC, data

generation speed λ.
Output: Task assignment strategy s∗, resources allocation scheme

θ∗, φ∗.
1: Convert the proportional optimization problem in (29) into the

of task assignment problem in (30) by utilizing Cauchy-Schwarz
inequality.

2: for all Vertex of the feasible set do
3: Obtain the corresponding task assignment strategy s.
4: Obtain the resource allocation scheme θ , φ according to s

and (34).
5: if Non-blocking constraints are satisfied then
6: if Lmin(s) < Lmin(s∗) then
7: Lmin(s∗) = Lmin(s).
8: Update the optimal s∗, θ∗ and φ∗.

Proposition 3: The objective function of the latency mini-
mization problem (35) is concave, and the optimal results s∗
are at the vertex of the feasible set bounded by the constraints.

Proof: The function Lmin in (35) depends on the vector
s = {s1,1

ED, . . . , sN,M
ED , s1,1

AP, . . . , sN,M
AP }. After analyzing the sign

of elements in the Hessian matrix of Lmin, we note that the
Hessian matrix is a seminegative definite matrix, implying that
the function Lmin is concave [34]. Hence, the minimum value
of a concave function is obtained at the vertex of the feasi-
ble set bounded by the nonblocking constraints presented in
Proposition 1.

Take the two-layer subsystem of EdgeFlow as an example,
and the subsystem consists of one AP and two EDs. Under
different conditions, the minimum value of Lmin is at different
vertex of the feasible set, as shown in Fig. 3. The comput-
ing nonblocking and transmitting nonblocking constraints are
shown as the straight lines in the figure, and the value of Lmin
decreases as the background color becomes darker. The opti-
mal result is marked with the dark spot, which may appear
at the crossing point of the computing and transmitting non-
blocking constraints [Fig. 3(a) and (b)], or the crossing point
of the computing nonblocking constraints [Fig. 3(c)].

According to Proposition 3, we can obtain the optimal
results of the latency minimization problem by searching all
the vertexes of the feasible set bounded by the constraints.
The latency minimization algorithm in the nonblocking state
is summarized in Algorithm 1.

V. BLOCKING STATE: RECOVERY TIME MINIMIZATION

ALGORITHM DESIGN

Considering the case that all APs and EDs fully utilize their
computing capacity, implying that the processed data volume
of APs and EDs equals the data volume assigned to them,
the system blocks if the data volume to be transmitted of any
AP or ED surpasses its transmitting capacity, or the amount
of the remaining raw data forwarded to the CC surpasses the
computing capacity of the CC.

The key idea of minimizing the recovery time, i.e., solving
the min-max problem in (28), is that make the computing time
and transmitting time equal on the blocking layer. Specifically,

WANG et al.: JOINT TASK ASSIGNMENT, TRANSMISSION, AND COMPUTING RESOURCE ALLOCATION IN MULTILAYER MEC SYSTEMS 2879

(a) (b) (c)

Fig. 3. Typical latency minimization results in the nonblocking state of one AP-two EDs subsystem.

minimize the recovery time of the whole network through min-
imizing the recovery time from the bottom layer (the EDs) to
the top layer (the CC).

A. Minimizing Recovery Time on the ED Layer

When the ED layer blocks, representing that the wireless
transmission resources of the AP are insufficient to transmit
the processing results as well as the remaining raw data of
its connected EDs, the task assignment strategy of the ED
layer and the transmission resource allocation of the AP to its
connected EDs need to be adjusted. The target is to make equal
the computing time and transmitting time of all EDs (including
the blocking ED node) connected with the same AP.

We consider the case that the blocking appears between AP
j and its connected EDs. Let

sj,1
ED = α ∈ [0, 1] (36)

and the total wireless transmission resources of AP j is φ
j
AP.

The computing time of EDs and AP j are equal, which can be
expressed by

Tj,i
ED = Tj,i′

ED, ∀1 ≤ i, i′ ≤ M. (37)

Therefore, the task assignment percentage of ED i, 2 ≤ i ≤ M
is

sj,i
ED =

⎧⎨
⎩

θ
j,i
EDλ

j,1
ED

θ
j,1
EDλ

j,i
ED

sj,1
ED = kiα, 0 ≤ α ≤ 1

ki

1, 1
ki

< α ≤ 1.
(38)

The computing time and transmitting time of EDs are equal,
which can be expressed by

Tj,i
ED = tj,iED, ∀1 ≤ i ≤ M. (39)

Hence, the transmission resources of AP j allocated to ED
i, 1 ≤ i ≤ M is

φ
j,i
ED = θ

j,i
ED

1 − sj,i
ED + ρsj,i

ED

sj,i
ED

= θ
j,i
EDf

(
sj,i

ED

)
. (40)

Since the total wireless transmission resources of AP j are
fixed, that is

M∑
i=1

φ
j,i
ED = φ

j
AP. (41)

Therefore, the task assignment strategy and resources allo-
cation scheme can be obtained by solving the simultaneous
of (36), (38), (40), and (41).

B. Minimizing Recovery Time on the AP Layer

When the AP layer blocks, representing that the wired trans-
mission resources of the CC are insufficient to transmit the
processing results as well as the left raw data of all APs, the
task assignment strategy of the ED layer and AP layer as well
as the transmission resources allocation of the APs and the
CC need to be adjusted. The target is to make equal the com-
puting time and transmission time of all APs as well as the
computing time of all EDs.

The task division percentage of each ED and AP should be
smaller than one, expressed by

0 ≤ sj,i
ED ≤ 1, 0 ≤ sj

AP ≤ 1, ∀1 ≤ j ≤ N, 1 ≤ i ≤ M. (42)

To fully utilize the computing capacity of all EDs and APs,
the computing times of all EDs and APs are equal

Tj,i
ED = Tj′,i′

ED = Tj
AP, ∀1 ≤ j, j′ ≤ N, 1 ≤ i, i′ ≤ M. (43)

The computing time and transmitting time of each AP are
equal, which can be expressed by

Tj
AP = tjAP, ∀1 ≤ j, j′ ≤ N. (44)

Moreover, the summations of allocated wired transmission
resources are equal to that of the CC

N∑
j=1

φ
j
AP = φCC. (45)

Similarly as the analyzing the case of ED layer blocking,
the task assignment strategy and resources allocation scheme
can be obtained by solving the simultaneous of (42)–(45).

C. Minimizing Recovery Time on the CC

When the CC blocks, representing that the computing capac-
ity of the CC are insufficient to process the remaining raw data,
the task assignment strategy of the CC, AP, and ED layer as
well as the transmission resources allocation of the APs and
the CC need to be adjusted. The target is to make equal the
computing time and transmission time of the CC as well as
the computing time of all APs and EDs.

2880 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 4. Illustration of task assignment strategy in the one ED-one AP-CC
system.

Algorithm 2 Recovery Time Minimization Algorithm

Input: Computing capacity θ
j,i
ED, θ

j
AP, θCC, wireless transmission

resources of each AP φ
j
AP, wired transmission resources φCC, data

generation speed λ.
Output: Task assignment strategy s∗, resources allocation scheme

θ∗,φ∗.

ED layer optimization:
1: Fully utilize the computing capacity of all EDs.
2: if The ED layer blocks then
3: Make equal of the computing and transmitting time of all

EDs connected with the same AP in the blocking area.
4: Update s∗, θ∗ and φ∗.

AP layer optimization:
1: Fully utilize the computing capacity of all APs and EDs.
2: if The AP layer blocks then
3: Make equal of the computing time of all APs and EDs.
4: Make equal of the computing and transmitting time of APs.
5: Update s∗, θ∗ and φ∗.

CC layer optimization:
1: Fully utilize the computing capacity of all APs, EDs and the CC.
2: if The CC layer blocks then
3: Make equal of the computing time of all APs, EDs and CC.
4: Update s∗, θ∗ and φ∗.

Similarly as the analyzing the case of ED layer blocking,
the task assignment strategy and resources allocation scheme
can be obtained by solving the simultaneous equations that
follows:

0 ≤ sj,i
ED ≤ 1, 0 ≤ sj

AP ≤ 1, ∀1 ≤ j ≤ N, 1 ≤ i ≤ M (46)

Tj,i
ED = Tj′,i′

ED = Tj
AP = TCC,∀1 ≤ j, j′ ≤ N, 1 ≤ i, i′ ≤ M.

(47)

As an example, the task assignment strategy in the one ED-
one AP-CC system is illustrated in Fig. 4.

The recovery time minimization algorithm in the blocking
state is summarized in Algorithm 2.

VI. IMPLEMENTATION OF THE EXPERIMENT

In this section, we establish the three-layer EdgeFlow sys-
tem consisting of the CC, APs, and EDs based on the Linux
system, USRP, and the Intel NUCs5 [35]. The EdgeFlow
platform is available in [36].

5Next unit of computing (NUC) is a small-form-factor personal computer
designed by Intel.

Fig. 5. EdgeFlow system implementation.

The USRP is a range of software-defined radios, which can
realize the general radio communication system [37]. Most
USRPs is composed with the hardware part as the radio front
end, and the software part, GNU Radio, which is a free soft-
ware toolkit that provides signal processing blocks [38]. The
operating principle of the USRP is that a host computer pro-
cess the signals based on the GNU Radio, and the processed
signals are delivered to the USRP performing as the radio front
end through the wired links [39].

The implementation of the EdgeFlow system is presented
in Fig. 5. One single server stands for the CC layer, and two
NUC nodes communicate with it performing as two APs. With
the USRP devices, each AP node connects to two ED nodes
over the wireless links with limited resources.

The EdgeFlow system is based on the Java and Python envi-
ronment, where Java environment is responsible for the task
assignment and processing and Python environment realizes
the time division multiple access resources management of
the network. The main modules for the implementation of the
EdgeFlow system are introduced as below.

1) Network Initialization Module: The network initializa-
tion module has three main functions. First, it establishes
the network connection of the wireless channel . Second,
it virtualize and manage the transmission resources for
the wireless and wired links. Third, it provides the
application program interface to the upper framework.

2) System Management Module: The system management
module includes the system initialization, logical graph
establishment and management. The system is connected
according to the communication links and Internet pro-
tocol address provided by the network initialization
module. Moreover, it is responsible for the node regis-
tration and resource configuration information updating.
The nodes estimate their idle computing and transmis-
sion resources, and register on the CC. The CC can then
create a logical graph of the nodes with their information
of the available resources.

WANG et al.: JOINT TASK ASSIGNMENT, TRANSMISSION, AND COMPUTING RESOURCE ALLOCATION IN MULTILAYER MEC SYSTEMS 2881

Fig. 6. IoT face recognition scenario based on the EdgeFlow system.

3) Resource Management Module: The idle computing and
transmission resources are evaluated in the resource
management module.

4) Task Assignment Module: The task assignment module
targets at obtaining the task assignment strategy based
on the idle resources of each node.

5) Task Execution Module: The main function of the
task execution module is the management of the task
assignment strategy. According to the task assignment
configuration file, which instructs the task assignment
strategy of each node, the module offloads the task and
manage the task queue of offloading and processing.

The procedures of running the EdgeFlow system consist of
the task notification, system registration, task assignment, and
data processing. The task is submitted to the CC by the user,
and broadcast to the APs as well as EDs. After receiving the
task notification, each node estimates its idle computing and
transmission resources and uploads them as well as the regis-
tration information to the CC. The CC then designs the task
assignment strategy and resources allocation scheme based on
the logical graph of the EdgeFlow system, and broadcasts
to the whole system. Different nodes in the EdgeFlow sys-
tem process and transmit data according to the received task
assignment strategy and resources allocation scheme.

VII. SIMULATION AND EXPERIMENT RESULTS

In this section, we evaluate the performance of the
EdgeFlow system. The evaluations are accomplished by sim-
ulating a typical IoT scenario similar to the face recognition
application, which is general in the IoT sensing network, such
as smart cities. Based on the face information, the computing
servers can provide the intelligent service to the users.

A. Experiment Scenario and Setup

As shown in Fig. 6, in our face recognition scenario, each
ED is connected with a camera which collects the image data.
The application aims to recognize the pedestrian faces and
slice out the face part, which will be delivered to the CC.
After the analysis of the face part, the CC will perform the
appropriate action. The face recognition is based on openCV,
which is a cross-platform open-source computer vision library
that suits both servers and mobile devices.

TABLE I
EDGEFLOW PLATFORM SPECIFICATIONS

We run the numerical simulation based on the Java platform
to simulate the computation and transmission procedures. The
simulation and experimental parameters are listed in Table I.
To distinguish the computing capabilities among various lay-
ers, the computing frequency is used to measure the computing
capacity. Each data file represents one image of the camera,
and the data generation speed λ is the number of face images
captured by the camera per unit time. Moreover, in our exper-
iment, the data generation follows Poisson point process. The
system performance is evaluated by the following indicators.

1) System Latency: The system latency represents the
response time from the data generation of the task to
the end of processing at the CC.

2) Processing Rate: This is the average volume of data
processed by the EdgeFlow system per unit time.

3) System Robustness: This reflects the average number
of the unprocessed packages in the network, which
represents the degree of blocking in the system.

B. Simulation and Experimental Results

In this section, we evaluate the performance of the dynamic
task assignment strategy in the EdgeFlow system. To attest the
effect of our proposed algorithm, we compare our algorithm
with the following solutions.

1) Local Computing: Each ED processes all the tasks
locally and delivers the results to the CC. This is suitable
for the case that the task load is light and the ED is able to
process the tasks timely.

2) Cloudlet: The ED assigns the tasks to the correspond-
ing AP [17]. The AP will process all tasks and deliver the
results to the CC. This is suitable for the case that the tasks are
resource-intensive and the AP possesses abundant computing
and transmission resources.

3) Cloud Computing: The input data stream is forwarded
to CC directly, and all the tasks is processed centrally at the
CC. This is suitable for the case that the tasks are resource-
intensive, while the edge nodes (including the APs and EDs)
do not possesses enough resources to process the tasks.

4) MDP: Based on MDP, a partial assignment scheme is
designed based on the queueing state, the execution state, and
the transmission state to minimize the task latency [27].

In our experiment, we observe the average task latency with
different data generation speeds. More task data requires more
computing and transmission resources. This experiment eval-
uates the effect of the proposed strategy given different task
loads. As depicted in Fig. 7, the consistency of the numerical

2882 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

(a)

(b)

Fig. 7. System latency versus the data generation speed in the simulation
and experiment. (a) Simulation results. (b) Experimental results.

simulation results and experimental results shows the effect of
our EdgeFlow system. It is obvious that our proposed scheme
is superior in most cases. Since the EdgeFlow system fully
utilizes the computing capacity of the CC, APs, and EDs,
the data processing ability is stronger than Cloudlet, local, or
cloud computing, which only utilize part of the system com-
puting capacity. However, in other schemes, when the data
generation speed λ ≥ 3, the system may start to run out of
the resources, and unprocessed data may have accumulated.
Compared with other schemes, our EdgeFlow system is more
tolerate to the data generation speed, that is, though the data
generation speed variate, our EdgeFlow can still provide stable
low-latency services.

As shown in Fig. 8, we analyze the processing rate of the
system with different data generation speed. When the gener-
ation speed λ ≤ 2, the system does not reach the bottleneck of
the computing capacity, and thus, all the schemes can process
the input task timely. When the generation rate λ ≥ 3, the
EdgeFlow system tries its best to guarantee the nonblocking

Fig. 8. Processing rate with the increase of the data generation speed on the
actual experimental platform.

Fig. 9. System robustness with the different burden of tasks on the actual
experimental platform.

condition by sharing the task overload among multiple layers,
which effectively eases the accumulation of the unprocessed
tasks and increases the processing rate. In other schemes,
however, the data starts to accumulate in the buffer once the
processing rate reaches saturation. For example, when λ = 5,
the processing rate of EdgeFlow is 15% higher than the MDP
scheme and 43% higher than the local computing scheme.

As shown in Fig. 9, we evaluate the system robustness for
the tasks with heavy loads, which can be reflected by the num-
ber of unprocessed packages waiting in the buffer. The length
of the waiting queue represents the degree of the blocking
in the system. When λ ≤ 2, the computing and transmis-
sion resources can still handle the input tasks, and thus all
schemes do not result in the data accumulation. When λ ≥ 3,
the resources of the AP or CC cannot guarantee the stable
operation of the system. The EdgeFlow system balances the
computing and transmission resources in the multilayer net-
work, which can maintain the stability of the system as much
as possible. Other system, e.g., Cloudlet, offloads all comput-
ing tasks to the AP, which bring about heavy loads to wireless

WANG et al.: JOINT TASK ASSIGNMENT, TRANSMISSION, AND COMPUTING RESOURCE ALLOCATION IN MULTILAYER MEC SYSTEMS 2883

Fig. 10. Recovery time after the different burden of tasks on the actual experimental platform.

links while lots of wired resources may still be idle, resulting
in the heavier data accumulation. Hence, the EdgeFlow sys-
tem performs better than other schemes when processing tasks
with heavy loads.

As depicted in Fig. 10, we analyze the system robustness in
the perspective of the time for the system to recover from the
blocking time after the data burst. At the time t = 14 s, the first
burst lasting 2 s only causes the data accumulation for the local
computing scheme, while the others are barely affected. After
that, at the time t = 30 s, a bigger burst lasting 5 s arrives
and affects all schemes. When dealing with data burst, the
system suddenly turns from the nonblocking to the blocking
state. Other schemes, i.e., the cloud computing, local comput-
ing, and Cloudlet, remain the same task assignment strategy,
which is not suitable for the blocking state since clearing the
accumulated data in the buffer becomes the primary mission.
The MDP scheme adjust the task assignment strategy based
on the queue state, which is hysteretic than the change of data
generation speed. Compared with other schemes, EdgeFlow
determines the optimal task assignment strategy based on the
data generation speed and system state, and thus guarantees the
smallest volume of accumulated data and the shortest recov-
ery time, which reflects that the EdgeFlow system is most
robust among these schemes, especially for the tasks with
heavy loads.

VIII. CONCLUSION

In this paper, we have proposed a multilayer data flow pro-
cessing system EdgeFlow, which consists of the CC, APs,
and the EDs. The EdgeFlow system can provide the low
latency services for the IoT real-time applications via the
integrated utilization of the computing capacity and trans-
mission resource of both CC and edge nodes. The blocking
and nonblocking states have been investigated and the quan-
titive boundary between the two states has been derived in
Proposition 1. In the nonblocking state, the system latency is
minimized, while in the blocking state, the latency is mean-
ingless for the accumulated data and the recovery time of the

system is minimized. The multilayer collaborative task assign-
ment and resource allocation strategies have been proposed
in Algorithms 1 and 2 for both states to achieve the opti-
mal solutions. The implementation of the EdgeFlow system is
based on the USRPs, the Intel NUCs, and the Linux system
for the typical IoT applications, face recognition. Experimental
results have shown that our EdgeFlow system can obviously
reduce the system latency and increase the data processing
rate, especially in the case of high data generation speed. The
system is able to stay in the nonblocking state by the dynamic
task assignment strategy and the resources allocation when
the data generation speed increases, and thus the volume of
accumulated data in the buffer remains small.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] H. Zhang et al., “Cellular Internet-of-Things (IoT) communications
over unlicensed band,” in Proc. IEEE DySPAN, Seoul, South Korea,
Oct. 2018, pp. 1–10.

[3] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of
Things: Vision, applications and research challenges,” Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[4] N. C. Luong et al., “Data collection and wireless communication in
Internet of Things (IoT) using economic analysis and pricing models: A
survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2546–2590,
4th Quart., 2016.

[5] A. M. Vilamovska et al., RFID Application in HealthCare—Scoping and
Identifying Areas for RFID Deployment in HealthCare Delivery, RAND
Europe, Cambridge, U.K., Feb. 2009.

[6] C. Buckl et al., “Services to the field: An approach for resource
constrained sensor/actor networks,” in Proc. WAINA, Bradford, U.K.,
May 2009, pp. 476–481.

[7] Y. Meng et al., “WiVo: Enhancing the security of voice control sys-
tem via wireless signal in IoT environment,” in Proc. ACM Mobihoc,
Los Angeles, CA, USA, Jun. 2018, pp. 81–90.

[8] F. Tang, Z. M. Fadlullah, B. Mao, and N. Kato, “An intelligent traf-
fic load prediction based adaptive channel assignment algorithm in
SDN-IoT: A deep learning approach,” IEEE Internet Things J., to be
published, doi: 10.1109/JIOT.2018.2838574.

[9] D. Evans, “The Internet of Things: How the next evolution of the Internet
is changing everything,” San Jose, CA, USA, CISCO, White Paper,
Apr. 2011.

[10] A. Papageorgiou, B. Cheng, and E. Kovacs, “Real-time data reduction
at the network edge of Internet-of-Things systems,” in Proc. CNSM,
Barcelona, Spain, Nov. 2015, pp. 284–291.

[11] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “A
survey on network methodologies for real-time analytics of massive IoT
data and open research issues,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457–1477, 3rd Quart., 2017.

http://dx.doi.org/10.1109/JIOT.2018.2838574

2884 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

[12] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010.

[13] Self-Driving Cars Will Create 2 Petabytes of Data, What Are the Big
Data Opportunities for the Car Industry? Accessed: Dec. 7, 2016.
[Online]. Available: https://datafloq.com/read/self-driving-cars-create-2-
petabytes-data-annually/172

[14] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” Sophia Antipolis, France,
ETSI, White Paper, Sep. 2015.

[15] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of MEC in the Internet
of Things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91,
Oct. 2016.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009.

[18] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[19] B. Di, L. Song, Y. Li, and G. Y. Li, “Non-orthogonal multiple access
for high-reliable and low-latency V2X communications in 5G systems,”
IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2383–2397, Oct. 2017.

[20] P. Wang, B. Di, H. Zhang, K. Bian, and L. Song, “Cellular V2X
communications in unlicensed spectrum: Harmonious coexistence with
VANET in 5G systems,” IEEE Trans. Wireless Commun., vol. 17, no. 8,
pp. 5212–5224, Aug. 2018.

[21] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. ACM Mobile Cloud Comput.,
Helsinki, Finland, Aug. 2012, pp. 13–16.

[22] H. Li, H. Zhu, S. Du, X. Liang, and X. Shen, “Privacy leakage of location
sharing in mobile social networks: Attacks and defense,” IEEE Trans.
Depend. Secure Comput., vol. 15, no. 4, pp. 646–660, Jul./Aug. 2018.

[23] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,
“Cloudlets activation scheme for scalable mobile edge computing with
transmission power control and virtual machine migration,” IEEE Trans.
Comput., vol. 67, no. 9, pp. 1287–1300, Sep. 2018.

[24] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method
for minimizing service delay in edge cloud computing through VM
migration and transmission power control,” IEEE Trans. Comput.,
vol. 66, no. 5, pp. 810–819, May 2017.

[25] S. Yi et al., “LAVEA: Latency-aware video analytics on edge computing
platform,” in Proc. ACM/IEEE SEC, San Jose, CA, USA, Oct. 2017,
pp. 183–196.

[26] H. Guo and J. Liu, “Collaborative computation offloading for multiac-
cess edge computing over fiber–wireless networks,” IEEE Trans. Veh.
Technol., vol. 67, no. 5, pp. 4514–4526, May 2018.

[27] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
ISIT, Barcelona, Spain, Jul. 2016, pp. 1451–1455.

[28] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[29] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,” IEEE
Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[30] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computa-
tion offloading for ultra-dense IoT networks,” IEEE Internet Things J.,
to be published, doi: 10.1109/JIOT.2018.2838584.

[31] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile edge
computing: Spatial modeling and latency analysis,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5225–5240, Aug. 2018.

[32] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing sys-
tems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797,
Mar. 2018.

[33] J. M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the
Art of Mathematical Inequalities. Cambridge, U.K.: Cambridge Univ.
Press, 2004.

[34] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[35] C. Yao, X. Wang, Z. Zheng, G. Sun, and L. Song, “EdgeFlow: Open-
source multi-layer data flow processing in edge computing for 5G and
beyond,” arXiv preprint arXiv: 1801.02206v2.

[36] The EdgeFlow Framework. Accessed: Apr. 19, 2018. [Online].
Available: https://github.com/sirius93123/EdgeFlow

[37] M. Ettus and M. Braun, “The universal software radio peripheral (USRP)
family of low-cost SDRs,” in Opportunistic Spectrum Sharing and
White Space Access: The Practical Reality. Hoboken, NJ, USA: Wiley,
Jul. 2015

[38] E. Blossom, “GNU radio: Tools for exploring the radio frequency
spectrum,” Linux J., vol. 2004, no. 122, p. 4, Jun. 2004.

[39] H. Zhu et al., “You can jam but you cannot hide: Defending against jam-
ming attacks for geo-location database driven spectrum sharing,” IEEE
J. Sel. Areas Commun., vol. 34, no. 10, pp. 2723–2737, Oct. 2016.

[40] L. Tang and S. He, “Multi-user computation offloading in mobile edge
computing: A behavioral perspective,” IEEE Netw., vol. 32, no. 1,
pp. 48–53, Jan./Feb. 2018.

Pengfei Wang (S’17) received the B.S. degree
in electronic engineering from Peking University,
Beijing, China, in 2017, where he is currently pursu-
ing the master’s degree with the School of Electrical
Engineering and Computer Science.

His current research interest includes wireless
communications, vehicular networks, and edge
computing.

Chao Yao (S’15–M’18) received the B.S. and
M.S. degrees in electronic engineering from Peking
University, Beijing, China, in 2015 and 2018, respec-
tively.

He is currently an Engineer with Bitmain
Company, Beijing. His current research interests
include edge computing and full-duplex.

Zijie Zheng (S’14) received the B.S. degree in elec-
tronic engineering from Peking University, Beijing
China, in 2014, where he is currently pursuing
the Ph.D. degree with the School of Electrical
Engineering and Computer Science.

His current research interests include game theory
and optimization in 5G networks, wireless powered
networks, mobile social networks, and wireless big
data.

Guangyu Sun (M’14) received the B.S. and M.S.
degrees from Tsinghua University, Beijing, China,
in 2003 and 2006, respectively, and the Ph.D.
degree in computer science from Pennsylvania State
University, State College, PA, USA, in 2011.

He is an Associate Professor with the Center
for Energy-Efficient Computing and Applications,
Peking University, Beijing. His current research
interests include computer architecture, electronic
design automation, and acceleration system for mod-
ern applications.

Dr. Sun is a member ACM and CCF. He is currently serving as an associate
editor of the ACM Journal on Emerging Technologies in Computing Systems
and the ACM Transactions on Embedded Computing Systems.

Lingyang Song (S’03–M’06–SM’12) received the
Ph.D. degree from the University of York, York,
U.K., in 2007.

He was a Research Fellow with the University
of Oslo, Oslo, Norway. He joined Philips Research,
Cambridge, U.K., in 2008. In 2009, he joined the
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China, where
he is currently a Boya Distinguished Professor.
His current research interests include wireless com-
munication and networks, signal processing, and

machine learning.
Dr. Song was a recipient of the IEEE Leonard G. Abraham Prize in 2016,

the IEEE Asia–Pacific Young Researcher Award in 2012, and the K. M. Stott
Prize for Excellent Research. He has been an IEEE Distinguished Lecturer
since 2015.

http://dx.doi.org/10.1109/JIOT.2018.2838584

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

