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Abstract—Oblivious RAM (ORAM) is a cryptographic prim-
itive designed to hide memory access patterns. To achieve this
objective, the intended data block is loaded and evicted back
together with other data blocks and dummy blocks in each
ORAM access. To further protect the timing pattern, extra
dummy ORAM accesses are triggered periodically. Such designs
lead to huge memory access overheads. Many techniques have
been proposed to mitigate this problem by reducing the total
number of ORAM accesses and the number of blocks per access.
However, the impact of the access order of intended data block
in an ORAM access is not addressed yet. In this work, we argue
that higher performance can be achieved by advancing the access
to the intended data block in ORAM accesses.

However, changing the access order of blocks directly com-
promises the ORAM security. To solve this problem, we propose
a duplication method to advance the access to the intended data
blocks without compromising the ORAM security. The method
leverages dummy blocks to store extra copies of data blocks,
to facilitate early access of intended data blocks. These dummy
blocks with valid data duplications are called Shadow blocks in
this work. We further introduce two data duplication techniques,
called RD-Dup and HD-Dup, to reorder the data block access
for different purposes. In addition, we propose ORAM space
partitioning to make RD-Dup and HD-Dup cooperate with each
other efficiently. Compared with state-of-the-art ORAMs, our
design can achieve a 32% reduction in system execution time on
average, with negligible hardware overheads.

I. INTRODUCTION

To ensure a secure and private environment for program ex-
ecution, memory encryption is widely proposed in various se-
cure hardware, such as Trusted Computing Module (TPM) [1],
eXecute Only Memory (XOM) [2], AEGIS [3] and etc [4]-
[6]. However, it is insufficient to merely encrypt data because
the data access pattern can also leak considerable sensitive
information [7]-[9]. For example, the adversary can use the
memory access addresses to construct the Control Data Flow
Graph (CDFG) to infer program being executed. Even worse,
the details of branches can be obtained with sophisticated skills
to indicate secret keys [7].

To overcome this problem, Oblivious RAM (ORAM) is
proposed as the general solution. ORAM is a cryptographic
primitive that can completely hide the access patterns to
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memory [10]-[12]. A single data access is transformed into se-
quential accesses to memory blocks, which hold real program
data, and dummy blocks, which hold useless data. Memory
access maintains an encrypted and shuffled form for all data
stored in the memory. For each memory access, data are
re-encrypted and reshuffled. With the help of ORAM, any
memory access pattern is computationally indistinguishable
from others of the same length [13]-[15].

The main obstacle of using ORAM is its large memory ac-
cess overhead. For every ORAM access, a number of dummy
blocks and data blocks are loaded together with the intended
data block. Before the access to the intended data block, a
number of blocks are fetched to the processor, leading to
significant increase in memory access latency and an average
of 3x ~ 4x system-level performance degradation [11],
[14], [15]. With timing protection, ORAM’s overhead can be
even higher because of additional ORAM requests [16], [17].
To tackle this problem, a number of techniques have been
proposed in the literature [11], [14], [15], [17]-[19]. These
approaches focus on reducing the total number of ORAM
accesses and the number of blocks per access, leading to an
order of reduction in access overhead.

However, prior researches do not consider the potential
of reordering the block accesses within an ORAM request.
In fact, we discover that the access order of the intended
data block has a significant impact on ORAM performance.
With earlier access to the intended data blocks, the interval
between data requests or even the number of requests can be
reduced (more details in Section III). Unfortunately, we cannot
arbitrarily advance the data access. Accessing the intended
data block first along the path disturbs the access pattern of
the ORAM request, which compromises ORAM security.

To overcome this limitation, we propose that it is possible
to leverage the dummy blocks, which normally occupy 50%
or above of total storage space, to advance accesses to the
intended blocks without security loss. To be specific, the
access to an intended block can be advanced if we previously
duplicate its data to a dummy block, which is read earlier
in future ORAM accesses. We call such dummy blocks with
data duplications as Shadow Blocks. Based on shadow blocks,
we propose two duplication techniques named Rear Data
Duplication (RD-Dup) and Hot Data Duplication (HD-Dup)
to improve ORAM performance. Considering that RD-Dup



and HD-Dup techniques may interfere with each other, we
further propose ORAM partitioning techniques to make them
cooperate with each other.

The main contributions are listed as follows,

e To the best of our knowledge, this is the first work addressing
the impact of data access order on ORAM performance.

e We reveal that the access to an intended data block can be
advanced using Shadow blocks without causing security loss.

e We propose RD-Dup and HD-Dup duplication techniques
to leverage Shadow blocks so that ORAM performance is
substantially improved.

The rest of this paper is organized as follows. We review the
attack model and basic knowledge of ORAM in Section II. In
addition, a state-of-the-art ORAM design called Tiny ORAM
is described as the baseline of this work. Then, Section III
illustrates motivation of this work. In Section IV, we introduce
details of shadow blocks and propose RD-Dup and HD-
Dup duplication techniques based on it. Moreover, static and
dynamic partitioning schemes are also presented to make RD-
Dup and HD-Dup cooperate with each other. We describe the
detailed hardware design to enable the duplication techniques
in Section V. A comprehensive evaluation of our design and
comparison with the baseline are provided in Section VI.
Section VII summarizes the related works, followed by a
conclusion in the last section.

II. PRELIMINARIES

In this section, the threat model is first presented. Then,
ORAM basics are introduced to explain how the memory
is protected from the attack. Last, Tiny ORAM is detailedly
described as a state-of-the-art ORAM design.

A. Attack Models

Similar to the previous work [11], [14], [19], in our attack
model, private programs are running on a secure processor.
All data inside the processor are invisible to the outside. The
processor is interacting with an untrusted external memory
in an untrusted environment. All the information transported
in the untrusted environment outside the processor will be
exposed to the attacker. Not only the data content itself but
also the access pattern of data should be protected. In addition,
the timing of the access can be recorded by the attacker for
further analysis [15], [16].

While data contents are protected by data encryption [2],
[31, [6], [20], [21], the memory access patterns and timing
channel can still leak considerable amount of secrets [7], [16].
This paper mainly focuses on the side channel leakage from
the memory address access patterns and corresponding timing
channel, which are widely discussed in ORAM designs [15]-
[17], [19]. Other attacks are orthogonal to ORAM designs
and out of scope for this paper, such as active attacks [20]-
[22], convert channel attacks [23], [24], EM-attacks [25], [26],
cache-timing attack [27], [28] and etc [29], [30].

B. ORAM Basics

ORAM is a cryptographic primitive designed to completely
hide the memory access patterns. In ORAM, a single memory
request sequence is transformed into a serial of memory
accesses, which is called an ORAM request. As defined in
previous work, an ORAM design is considered to be secure
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if any two ORAM request sequences with the same length
are computationally indistinguishable, no matter what their
original memory request sequences are [12], [13], [15].
Beside the core function to hide access patterns to external
memory, timing protection is also widely proposed in pre-
vious ORAM designs [15], [17], [19], [31] and other related
work [32], [33]. The timing channel of memory access can
indicate information inside the secure processor. For example,
the timing channel can imply when the cache miss occurs.
Thus, program locality can be inferred by the attacker [16]. A
data-independent and non-stop accesses to the external mem-
ory can eliminate this leakage [15], [16]. For the leakage from
length of ORAM request sequence, since leakage bits grows
logarithmically with the increment of the sequence length, this
leakage can be omitted compared to the linear leakage from
memory access pattern and timing channel leakage [14].

C. Tiny ORAM

In this section, we will introduce one of the state-of-art
ORAMs called Tiny ORAM [18]. We use Tiny ORAM as
an example because of its algorithm simplicity and imple-
mentation efficiency. Tiny ORAM is directly derived from the
Path ORAM [13], which has been proposed and increasingly
optimized [11], [14]-[16], [19]. Tiny ORAM is compatible
to nearly all optimizations to Path ORAM, and can theo-
retically achieve a lower access overhead compared to Path
ORAM [18]. In fact, optimizations in this paper can be applied
to any other ORAMs that utilize dummy blocks, such as Ring
ORAM [34], SSS ORAM [12] and etc [35]-[37].

Figure 1 (a) illustrates an overview of the Tiny ORAM
architecture, which includes two components: (1) an untrusted
external memory (above CPU-memory boundary) and (2)
a trusted on-chip ORAM controller (below CPU-memory
boundary), which are described as follows:

The external memory is logically structured as a binary tree
called ORAM tree [14], [15]. As shown in Figure 1 (a), L+1
levels are contained in the ORAM tree, which are denoted as
level 0 (root), level 1, ..., level L (leaf). The node of the tree
is called a bucket, which holds a fixed number (denoted as 2)
of slots to store memory blocks. One bucket can hold 0 ~ Z
data blocks, which hold the valid data of the program. If the
bucket is not full, the rest of a bucket is filled with dummy
blocks, which hold meaningless data for confusion. Both data
blocks and dummy blocks are probabilistically encrypted with
One Time Pad [4], [S], [11]. Thus, any two cipher blocks are
indistinguishable, even when their plaintext are the same and
no matter they are dummy or data blocks. Every leaf node in
the ORAM tree is assigned a label ranging from 0 to 2 — 1.
And path-/ is defined as the path from the leaf with label [ to
the root. For instance, as shown in Figure 1 (a) and Figure 1
(c), path-2 is highlighted.

The ORAM controller includes two main components: a
stash and a position map (denoted as “PosMap” in Figure 1).
The stash is an on-chip memory component to temporarily
hold a small number (e.g. 200 data blocks [11], [14], denoted
as M) of data blocks. The position map is a lookup table
recording the leaf labels for every program address. At run-
time, each data block is assigned with a random leaf label.
Tiny ORAM design follows an invariant [11], [13]: a data
block with a leaf label of | must be either in the stash or path
[. Data blocks are always stored together with their program
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addresses (namely the query addresses from CPU) and leaf
labels, regardless of whether they are in the stash or in the
external memory.

For a memory request denoted as (addr, op, data), where
addr represents the program address and op denotes the
operation type (read/write), it is transformed into an ORAM
request in following steps [15], [18]:

Step-1: Stash is queried for a data block with addr. If the
data block is present, it is forwarded to CPU Last Level
Cache (LLC).

Step-2: If a stash miss occurs, ORAM controller refers to
the position map for the leaf label (1) of addr.

Step-3 (Path Read): Blocks along path-/ are loaded from
ORAM tree and stored into stash after decryption. During
the path read, the intended data block required by the
processor is forwarded to LLC for further read or write,
while dummy blocks are all discarded. Then, the leaf label
for addr is remapped to I’ and the position map is updated.
During path read, data blocks along the path-/ are invalidated.
Step-4: Path read operations are launched a fixed (A-1)
times. Number A is normally called eviction rate.

Step-5: Path-k is chosen following a reverse lexicographical
order [18], [34]. Then, path-k is loaded through a path read.
Step-6 (Path Write): Path k is re-filled with data blocks
in the stash. The principle is to re-fill the path with data
blocks in stash “as many as possible” [11], [13] following
Path ORAM invariant. Data blocks written back to memory
from the stash are marked as replaceable blocks, which means
their corresponding positions in the stash become free slots
to hold new data. Dummy blocks are inserted if there are
free slots in the path.

In previous literature [18], Step-3 are called Read-Only
phase, which actually loads the memory data to serve LLC
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read/write. Step-5 and Step-6 are called Read-Write phase,
which aims at evicting blocks in the stash. Path read (Step-
3, Step-5) and path write (Step-6) are the core steps in Tiny
ORAM. An example is shown in Figure 1 to further illustrate
them.

In Figure 1 (a), path-2 is loaded to access Data-A, which
is intended. As shown in Figure 1 (b), before the access to
the Data-A, three data blocks and two dummy blocks have to
be accessed. Before the path read, block-E, F, G are in the
stash. In addition, Data-E are replaceable in the stash since
it has been evicted before. During the path read, Data-E and
other replaceable blocks are replaced by incoming data blocks,
while dummy blocks are discarded and not inserted into the
stash. After the path read, the stash consists of Data-D, F, G,
C, B, A. As shown in Figure 1 (c), during path write, block-D,
F, G, B are evicted back and marked as replaceable. If there
are no proper blocks in the stash to fill free slots in the path,
dummy blocks are written, which is illustrated in Figure 1 (d).

Tiny ORAM can be further improved with techniques to
address other design issues, such as proper configurations to
ensure negligible stash overflow possibility [11], unified pro-
gram address space to address external position map issue [14],
and constant-rate requests to protect timing channel [16]. In
the rest of this paper, a Tiny ORAM combined with these
techniques is used as our baseline and denoted as Tiny ORAM
for simplicity.

III. MOTIVATION OF ADVANCING ACCESS

In this section, we discuss the potential benefits of advanc-
ing the intended data block access, which motivates this work.

In an ORAM request, before the intended data block is
really accessed, a number of blocks including unneeded data
blocks and dummy blocks have to be fetched by ORAM con-
troller. This process can severely stall the program execution in
CPU. Thus, if the access to intended data block is advanced, it
is straightforward that the stalled CPU can be restored earlier.
Then, the following ORAM requests can be issued earlier so
that the overall memory performance is improved.

We use the code in Figure 2 (a) as an example. In this
example, we assume that both Data-1 and Data-2 are not
cached in CPU and need to be accessed in the ORAM tree.
From the code, we can find that the CPU request for Data-
2 depends on the result of Function-1(Data-1). Thus, if we
can advance the access to Data-1 from the tail to the head of
the ORAM request, ORAM request for Data-2 can be issued
earlier, respectively. The effect is illustrated in Figure 2 (b)
and (c). We can find that the data request interval (DRI) is
reduced.

The benefits are more significant when there exists timing
protection. As shown in Figure 2 (d), an extra dummy ORAM
request is induced due to the long DRI between Data-1 and
Data-2. As shown in Figure 2 (e), if we can advance the access
time to Data-1, the dummy request can be even saved. Thus,
the data request interval is further reduced more significantly.

From these two examples, we observe that advancing the
access to intended data block in an ORAM request can reduce
the DRI between this ORAM request and the following one.
In fact, the DRI can occupy up to 50% of total execution
time [16], especially when timing protection is equipped. Thus,
the ORAM performance can be significantly improved if we
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can advance the access to intended data block in each ORAM
request properly.

Unfortunately, the access to intended data cannot be ad-
vanced arbitrarily because of two obstacles. First, the exact
position of the target block is unknown before the block is
loaded into the stash along its loading path. Second, even the
position is known before the access, we cannot directly change
the access sequence because it will compromise the security
of ORAM. We illustrate this as follows:

In an extreme case, we suppose that the intended block is
always accessed first along the path. Thus, the attacker knows
where the intended block locates in every path access. And
there are two sequences of program addresses:

e Sequence; (Scan accesses): {ai,az,...,an}
e Sequences (Cyclic accesses):{a1, ag, ..., Ak, A1, .oy Ak, A1, ...

}
Here N represents the number of blocks in a memory
(e.g. N = 226 for Table I) and k < N. If the intended
block is observed to appear at a path that is written within
last k£ path writes, we call this Read-Recent-Written-Path
(RRWP-£). It is obvious that for Sequences, RRWP-£ occurs
more frequently than that of Sequence;. Thus, Sequence; and
Sequences can be distinguished, which proves that changing
the access sequence compromises the security of ORAM.

To overcome these obstacles, we propose an efficient and
secure data duplication technique. This is inspired by the
fact that there exist abundant dummy blocks, which normally
occupy about 50% of memory space [11], [14], [18]. The basic
idea is to store copies of data blocks in these dummy blocks
without being aware by attackers. Thus, the access to intended
data blocks can be advanced without any security loss. The
detailed method is introduced in the next section.

IV. DATA DUPLICATION IN ORAM

In this section, we first demonstrate how to advance data
access through data duplication without compromising ORAM
security. Then, Rear Data Duplication (RD-Dup) and Hot Data
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Duplication (HD-Dup) are proposed for two types of data
blocks, respectively. Last, we introduce how to make RD-
Dup and HD-Dup cooperate with each other under memory
partitioning schemes.

A. Shadow Blocks for Duplication

As discussed in last section, the attackers should be unaware
of the duplication process to prevent security loss. Thus, the
duplication cannot be performed by explicitly moving data in
main memory. Instead, the duplication process is seamlessly
integrated with the path write operation and completed inside
the ORAM controller.

An example of duplication is shown in Figure 3 (a) for the
Tiny ORAM. Compared to the original path write in Figure 1
(c), the only difference is that dummy blocks are filled with
Data-F rather than some useless data. This dummy block is
called a Shadow block of Data-F, which is highlighted in the
figure. Since all blocks are re-encrypted in each path write, the
shadow block is indistinguishable from the original dummy
block.

A shadow block can be generated as long as the following
three rules are satisfied:

o Rule-1: shadow block also follows the invariant of Tiny
ORAM block described in Section II-C.

e Rule-2: shadow block always appears at lower levels of
ORAM tree than the data block being duplicated.

e Rule-3: shadow block are replaceable in the stash and can
be replaced by any incoming data blocks.

Rule-1 and Rule-2 guarantee that there is only one version
of data for different copies in the stash and ORAM tree.
Whenever the original data block is loaded to stash, its shadow
block(s) (if existed) are always loaded together. Then, no
matter the data block are updated or re-mapped to another



path, the shadow block(s) are always consistent with the data
block. The stale shadow blocks are invalidated in the path
read (Step-3 in Section II-C). Rule-3 guarantees that the stash
overflow possibility is not affected, which is proved in the next
subsection.

In a later path read operation, the Data-F is the intended
data block. As shown in Figure 3 (c), the shadow block of
Data-F is identified during before the real Data-F is loaded.
Thus, the CPU can obtain requested data in shadow blocks and
be restored earlier from stall. The timing diagram is shown
in Figure 3 (d). Apparently, the access to Data-F is being
advanced with the help of its shadow block. In order to identify
the shadow blocks, the data structure of blocks is changed
slightly. The only difference is that an additional bit is added
to every block to indicate whether it is shadow block or not
(referred as “‘shadow bit”). Namely every block in the ORAM
tree or stash is in the form: (shadowbit, data,label, addr) as
shown in Figure 7(a).

A merge operation is introduced to handle multiple copies
of data in stash. There are two cases of merge operations. First,
if the original data block is loaded together with its shadow
block(s) into stash, all shadow block(s) are discarded after the
original data block is loaded. Second, if only multiple shadow
blocks are loaded into the stash, they are merged as a single
shadow block.

B. Security Proof of Data Duplication

In this section, we first prove that our scheme is as secure as
Tiny ORAM in the aspect of memory access patterns. Then,
we prove that the stash overflow possibility of our design and
Tiny ORAM are also the same.

1) Access Pattern Security: For clarity, we list the pseu-
docodes of the path write and the path read in Algorithm 1
and Algorithm 2, respectively. Pathl[l][i] represents the iz,
block along the path with leaf label /. Compared to the path
read and the path write of Tiny ORAM, modified operations
in our design are highlighted with red color. We also highlight
the operations that the CPU interacts with the external memory

Algorithm 1: Path Write with Duplication
Input: Leaf label 1

1 for (i =Z*L-1;i > 0; i——) do

2 blk <— stash_blk_select( ); /+ select data from stash to be
evicted to Path[l][i] =*/

3 if blk.type is dummy then

4 blk <— dup_blk_select(); /* select data to be

duplicated to Path[1l][i] =*/
5 end
6 Path[1][i]<— Enc(blk); /+ Blk is encrypted and written to

Path[1][i] in the memory =/
7 end

Algorithm 2: Path Read with Duplication

Input: Leaf label 1
1 for (i=0;i<Z*L-1; i++) do

2 blk <— Dec(Path[1][i]); /* Path[1][i] is read from the
memory and decrypted x/

3 if blk.type is real or blk.type is shadow then

4 stash_insert(blk); /+ blk is inserted into the stash
*/

5 if blk.addr is LLC_request_addr then

6 LLC<— blk.data; /* data of blk are forwarded to

LLC x/

7 end

8 end

9 end
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in blue color (Line 6 in Algorithm 1 and Line 2 in Algorithm
2). In other words, except operations in blue color, the rest
operations all occur within the CPU and are invisible to
attackers.

Because the lines in blue color are common for both our
design and Tiny ORAM, the interactions between the CPU and
the memory of our scheme and Tiny ORAM are the same. The
only change is that we change the content of blocks in path
write (Line 4 in Algorithm 1) and we do not discard data of
shadow blocks in path read (Line 3 and Line 4 in Algorithm 2).
However, these internal operations cannot be observed by the
attacker and leak no information. For the external activities that
CPU interacts with the memory, the attacker cannot distinguish
our scheme with Tiny ORAM because the probabilistically
encryption is adopted. According to the definition of ORAM,
our scheme is as secure as Tiny ORAM.

2) Stash Overflow Possibility: Similar to Path ORAM,
one critical problem of Tiny ORAM is the stash overflow
possibility [11], [14], [15]. In our design, real blocks can
always replace the shadow blocks in the stash (Rule-3 in
Section IV-A). Thus, the security strength of utilizing shadow
blocks is the same to Tiny ORAM on the aspect of stash
overflow possibility. Note that, if a stash size is set to ensure
enough security parameter (i.e. negligible possibility of stash
overflow), the stash can always hold all the data from a path,
including the data blocks and shadow blocks [15].

Data duplication provides the potentials to utilize dummy
blocks in the ORAM tree without compromising security. In
the following sections, we illustrate two techniques based on
data duplication: Rear Data Duplication (RD-Dup) and Hot
Data Duplication (HD-Dup).

C. Two Duplication Schemes

As discussed in subsection IV-A, a shadow block can be
generated as long as those three rules are satisfied. Thus,
an critical problem is how to select a proper candidate data
block to be duplicated for specific purpose. In this subsection,
we propose two duplication schemes with different selection
methods.

1) Rear Data Duplication: Since an intended data block
in higher levels of ORAM tree can result in longer DRI, an
intuitive method is to select the candidate with highest level.
To simplify the discussion, we call such a candidate with
highest level Rear Data in this work. And such a duplication
method is called Rear Data Duplication (RD-Dup).

An example of write path is shown in Figure 4 to illustrate
the RD-Dup. The conventional Tiny ORAM without duplica-
tion is shown in Figure 4 (a) for comparison. We assume that
there are only four data in the stash, which are Data-A, B, C,
D. Their positions in the Tiny ORAM tree are also shown in
the figure after the path write.

The state of Tiny ORAM tree after using RD-Dup is shown
in Figure 4 (b). When we write to the dummy block in Level-1,
both Data-A and Data-B satisfy the rules of becoming shadow
blocks. We assume that Data-A is loaded after the Data-B,
though they are in the same bucket. Then, Data-A is selected
for duplication and stored in the dummy block'. Note that
the level of Data-A has changed to level-1 after duplication.

If all blocks in a bucket are loaded concurrently, a block can be selected
randomly [11].



Later, when we write to the dummy block in Level-0, Data-B
is duplicated because it has highest priority.

O Dummy block [ Data block DReplaceable data block
(a) ORAM tree
Level 0 .E
Level 1
Level 2

Stash  [A[B[c[p] T |
(b)
Level 0
Level 1
Level 2 .E
Stash  [A[B[c[p] T |

Fig. 4. (a) Path write without duplication (b) Path write with RD-Dup

2) Hot Data Duplication: The shadow blocks can also be
leveraged to duplicate hot data that are frequently accessed.
Since blocks located at lower levels have a higher probability
to be loaded into the stash in a path read, the shadow blocks
in low levels can help to cache hot data into stash. If those
blocks contain the data to be used in the future, extra data
requests can be avoided. Such a duplication method is called
Hot Data Duplication (HD-Dup) in this work.

The basic work flow of Hot Data Duplication (HD-Dup)
is the same as RD-Dup. The differences are listed as follows.
The priority of a candidate block is defined as the access count
of the block instead of its ORAM tree level. The priority of
the blocks are stored in a Hot Address Cache (see SectionV
for details), instead of the stash. When a shadow block is
generated in a path write, HD-Dup searches the Hot Address
Cache to identify the candidate with highest priority. Note that
if a candidate is not in the access counter cache, priority of
this block is set to zero.

D. Cooperating RD-Dup & HD-Dup

Since RD-Dup and HD-Dup have different duplication
methods, they will interfere with each other. To mitigate this
problem, we propose to partition the ORAM memory tree into
two regions, which use RD-Dup and HD-Dup separately.

The rationale behind partitioning is explained as follows.
Using blocks at low levels for RD-Dup is less efficient if the
promoting time exceed DRI too much since next data request
has to wait for the end of current request (see Figure 2 for
intuitions). In addition, using HD-Dup is more efficient to
duplicate hot data to blocks at the lower levels of ORAM
tree because of frequent accesses. Therefore, allocating blocks
at higher levels for HD-Dup is less efficient compared to
allocating blocks to RD-Dup. Thus, there should be an optimal
boundary to partition the ORAM tree into two parts: higher
part and lower part. The level separates two parts is defined as
the Partitioning Level. For dummy blocks above and in the
partitioning level, shadow blocks are generated with RD-Dup,
while the HD-Dup is employed in the lower part. A path write
with partitioning is illustrated in Figure 5.

1) Static Partitioning: It is straightforward to apply parti-
tioning with a fixed partitioning level for all programs. How-
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ever, the optimal selection differs with programs and periods
(see Section VI), which motivates the dynamic partitioning.

2) Dynamic Partitioning: While a fixed partitioning level
simplifies the system design, it is not optimal for programs
having varying LLC miss intervals. HD-Dup is more useful
when programs have higher locality, where it needs higher
partition level. RD-Dup becomes more useful if programs have
longer LLC miss intervals. Unfortunately, locality and LLC
miss intervals of programs are changing along the time.
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Fig. 6. (a) Sampled miss intervals for himmer and (b) Corresponding execution
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As an example, a snippet of hmmer is illustrated in Figure
6 (a) to show the period-to-period variation of LLC miss
intervals. The LLC misses are indexed with their order of
appearance starting from 0. Intuitively, when most DRIs are
small, HD-Dup is more efficient so that the partitioning level
should increase. When most DRIs are large, the partitioning
level should decrease to enable more RD-Dup duplication. We
further illustrate the system execution time with HD-Dup and
RD-Dup in Figure 6 (b), in which the curve gradient can
represent the runtime latency to serve a single LLC miss.
For the first half LLC misses, RD-Dup outperforms the HD-
Dup whereas for the second half, HD-Dup is more efficient
than RD-Dup with a lower curve gradient. This coincides with
previous intuitions. Therefore, to benefit from both schemes,
dynamically adjusting partitioning level is preferred.

Fortunately, the variation of miss intervals occurs period-
ically, which has been also shown in Figure 6 (a). Thus,
we use a method similar to saturating counter [38] to reflect
and predict the intensity of long LLC miss intervals. This



counter is called Data Request Interval Counter (DRI Counter).
The counter updates after each ORAM request. If the current
request is a dummy request and its previous request is a real
request, the counter is increased by one. If the current request
is a real request and its previous one is also a real request,
the counter is reduced by one. Otherwise, the counter keeps
unchanged. The strategy is based on the observation that a
real request followed by a dummy request means the DRI is
too long and RD-Dup is preferred. A real request followed
by another real request means short DRIs and HD-Dup is
preferred. The counter becomes saturated after it reaches zero
or the maximum value (2¢0vnter-tength _ 1) If DRI Counter is
smaller than the half of the maximum value, the partitioning
level is increased by one level, and vise versa. Figure 6 (b)
shows the execution time of a dynamic partitioning scheme
with a 3-bit DRI counter. We can find a reduction in execution
time w.r.t HD-Dup or RD-Dup.

It is noticeable that dynamic partitioning does not degrade
the security of ORAM. For ORAM schemes without timing
protection, the timing channel leakage of dynamic partitioning
scheme is the same with that of a naive scheme. Both of them
leaks information about the locality and LLC miss intervals
of the protected programs. For ORAM schemes with timing
protection, the dynamic scheme is as secure as other work [17],
[19] and only leaks bits which grow logarithmically with the
increment of overall program execution time [16].

E. Compatibility with ORAM Optimizations

In this section, we discuss the compatibility of shadow block
to state-of-the-art ORAM optimizations and countermeasures
to mitigate other attacks towards ORAM. Since shadow block
only changes the content of dummy blocks, shadow block can
be combined with almost any other ORAM optimizations, such
as super block prefetching [11], [17], PosMap Lookup Table
[14], treetop caching [15], fork path [19] and etc. In addition,
shadow block can be combined with other countermeasures
such as timing side channel protection [39], [40]. The only
exception is XOR compression [12], [31], [34].

XOR compression is a state-of-the-art ORAM optimization,
in which all blocks along a path are first XORed, and then only
one block of the XOR result is sent to the processor. Thus, the
bandwidth of CPU-memory bus is saved. However, there are
two limitations of XOR compression. First, XOR compression
requires that the memory has the capability of computing,
which is not supported in most of today’s commercial DRAM.
Second, XOR compression has limited effect in reducing
ORAM access latency. Actually, the bottleneck of ORAM is
not at the CPU-memory bus, but at the internal bandwidth
of DRAMs. Even if the processor-memory bandwidth is
saved, the internal bandwidth still limits the access speed. We
will compare XOR compression technique and shadow block
technique in Section VI-C.

V. HARDWARE DESIGN
In this section, we introduce the hardware modification to
support Shadow blocks, RD-Dup, HD-Dup, and partitioning.
A. Stash Modification

As designed in previous work [15], the stash is implemented
using a content addressable memory (CAM). Data with certain
program address can be referred immediately. An evicted bit
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is used to denote a block is replaceable (a.k.a. replaceable
block). The modification is as follows. First, a shadow block
is also label as replaceable block after it is loaded into stash.
Second, as mentioned before, merge operations can occur if
two blocks in the stash have the same program address.

B. New Components in ORAM Controller
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To support HD-Dup and RD-Dup, three several components
are added, which include Hot Address Cache, RD-queue, HD-
queue, partitioning level register, and DRI counter register.

1) Hot Address Cache: Hot Address Cache stores the
access counter for hot data. We implement it with a set-
associative cache. The tag represents the program address and
a Least Frequently Used (LFU) policy [41] is adopted. Note
that this cache only store the program addresses from the LLC
misses (read or write). Ever since a cache-line is hit in the
cache, the corresponding counter will be increased by one.

2) RD-queue and HD-queue: Two queues called Rear Data
queue (RD-queue) and Hot Data queue (HD-queue) are added
to store all candidate data blocks that can be duplicated in RD-
Dup and HD-Dup, respectively. RD-queue are used to sort
the data levels of blocks in the queue. HD-queue is sorted
according to the access counters of the candidate blocks.

Whenever a data block is evicted and written back to the
ORAM tree, the stash address of that block will be inserted
into this queue. Note that shadow blocks in the stash, which
can be evicted, are also inserted into the queues. For HD-
queue, if the inserted data is not found in the Hot Address
Cache, the access counter of this data will be initialized as
zero. When a dummy block is encountered during the path
write, blocks at the head of these queues will be used to
generate to the Shadow block. Both queues are cleared after
the path write is completed.

3) Extra Registers: We add a partitioning level register
to store the partitioning level. A DRI counter register is
also needed to store the current DRI counter and update the
partitioning level. For each dummy block to be filled, its
level is compared with the partitioning level to select which
duplication method (e.g. queue) to use.

C. Design Overhead

We evaluate the design overhead of Shadow block tech-
nique. For storage overhead, the main overhead comes from



the shadow bit (1-bit) in every block, which is approximately
4AM B at DRAM. The Hot Address Cache is set to be 1K B
in this work and thus introduces negligible overhead. For the
logic overhead from structures described previously, circuit
level synthesis results show that the main cost comes from the
HD-queue and RD-queue. They require about 13,000 gates,
which is negligible compared with the area of ORAM logic.

VI. EVALUATION

In this section, we first present the experimental setup. Then,
we evaluate our design using a representative system config-
uration, in both scenarios with and without timing protection,
respectively. In addition, we will show the evaluation results
compared to previous work. Finally, sensitivity analysis of
different configurations is provided.

A. Experimental Setup

To evaluate the performance of our designs, a full system
simulator gem5 [42] integrated with DRAMSim2 [43] is
adopted in this work. Table I lists the detailed configuration
of processor, ORAM controller, and main memory. Latencies
of ORAM control logic and cache are generated from Syn-
opsys [44] and CACTI [45], respectively. DRAMSim?2 [43] is
used to model the latency of a ORAM path access. Default
parameters of DDR3 latency from DRAMSim2 are adopted
in the evaluation. Power consumption are evaluated with
energy parameters from [16]. We also use a state-of-the-art
configuration of O3 CPU [19] for the evaluation in Section
VI-E. The O3 CPU and the in-order CPU only differs in core
type/number and L2 cache, which are listed in Table I.

Two memory channels are employed as same as the typ-
ical configuration [11], [14]. To ensure a low probability of
stash overflow, a 50% memory utilization is assumed in this
work [11]. It means that to store a 4GB data, a 8GB DRAM
is required. The block slots per bucket (Z) and eviction rate
(A) are also set as (5,5), which is suggested in [18]. To fully
tap the potential of DRAM bandwidth, a sub-tree layout is
derived [11]. In order to make a comparison with previous
work [18], ten workloads are selected from SPEC 2006 [46]
benchmark suites for a comprehensive evaluation.

B. Evaluation Results without Timing Protection

In this section, we first evaluate the efficiency of RD-
Dup and HD-Dup, relatively. Then, the static partitioning
and dynamic partitioning schemes will be evaluated. Last,
evaluation of performance and energy is present. To better
illustrate the effect of HD-Dup and RD-Dup, we list the
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Fig. 8. Normalized access time using RD-Dup and HD-Dup, respectively
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TABLE I
PROCESSOR AND MEMORY CONFIGURATION.

Core, on-chip cache (in-order CPU)

Core type in-order single-core Alpha

Core frequency

2GHz

L1 I/D cache
L1 read/write

32KB/32KB, 2-way, LRU
1/1-cycle

L2 cache
L2 read/write

IMB, 8-way, LRU
10/10-cycle

Core, on-chip cache (O3 CPU [19])

Core type
Core number

out-of-order Alpha
4, 8-way issue

| L2 cache | 1MB shared, 8-way, LRU
ORAM controller

Controller clock frequency 2.0GHz

Data block size 64B

Data ORAM capacity 4GB (L = 24)

DRAM utilization 50%

PLB 64KB [14]

Block slots per bucket (Z) 5 (18]

Eviction rate (A) 5 (18]

AES-128 latency 32 cycles [14]
Memory controller and DRAM

Memory type DDR3-1333

Memory channels 2

Peak bandwidth 21.3GB/s

data access time and data request interval (DRI), respectively.
Data access time means the time consumed by data ORAM
requests. For the total execution time, we have:

(€]

Total_execution_time = Data_access_time + DRI

Figure 8 illustrates the data access time and DRI normalized
to the total execution time of Tiny ORAM, respectively. The
bar of Tiny-Data denotes the normalized data access time
while Tiny-Interval denotes the normalized DRI. The bars
of Tiny-Data and Tiny-Interval are stacked to represent the
total execution time. The bar of (HD)RD-Dup-Data/-Interval
represents the normalized data access time/DRI when (HD)
RD-Dup is applied. We can see that RD-Dup mainly reduces
the DRI while HD-Dup mainly reduces data access time. This
agrees with the purposes of RD-Dup and HD-Dup. On average,
RD-Dup reduces 74% DRI, 2% data access time and 16% total
execution time compared with Tiny ORAM, respectively. By
contrast, HD-Dup reduces 27% DRI, 12% data access time
and 15% total execution time compared with Tiny ORAM,
respectively.

Figure 9 illustrates the execution time of three representative
benchmarks and ten workloads’s geometric mean, after the
static partitioning is applied. We investigate effects when the
partitioning level increases from zero to 25. The Interval/Data
curve represents the DRI/data access time normalized to the
total execution time of Tiny ORAM. And the normalized
total execution time is also illustrated. For most workloads,
with the increase of partitioning level, the data access time
decreases while the DRI increases. This is natural since
more/less dummy blocks are assigned to HD-Dup/RD-Dup
if the partitioning level is higher. One exception is namd,
since the number of data requests is largely reduced, the DRI
also reduces. For sjeng, the reduction of data access time is
less than the increase of DRI, which leads to a increase in
total execution time. And vice versa for h264ref. From the
figure of geometric mean, we find that the total execution time
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0 is 85% and 80% w.r.t. Tiny ORAM, respectively. Results of

Fig. 12. Energy normalized to the insecure system w/o timing protection

first decreases and then increases with the partitioning level.
The minimum total execution time is 83% of Tiny ORAM’s
execution time when partitioning level is 7.

Figure 10 illustrates the normalized access time when dy-
namic partitioning is applied. We set the width of DRI Counter
from one-bit to eight-bits to investigate the best counter width.
We can find that the total execution time first drops and then
increases with the increment of counter width. A short-length
counter is easily influenced by some noise and cannot catch
the feature of LLC miss intervals. For a long-length counter,
it may take much time to adapt to the change in LLC miss
intervals, which leads to an out-of-date representation of LLC
miss intervals. From the results of geometric mean, when the
counter’s width is set to be 3-bit, the average total execution
time can be the minimum, which is 80% of Tiny ORAM’s.
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mcf, libquantum and omnetpp show relative high slowdown
due to high memory intensity. Using shadow block, speedups
of 1.19X, 1.24X and 1.33X are achieved, respectively.
Figure 12 illustrates the energy consumption of mem-
ory system normalized to the insecure system. Static-7 and
dynamic-3 achieve a reduction of 14% and 18% in energy
w.r.t. Tiny ORAM, respectively, since the number of ORAM
requests and the total execution time both decrease. Thus, the
dynamic power and static power of memory system are saved.

C. Evaluation Results with Timing Protection

In this section, we will evaluate the efficiency of shadow
block when timing protection is equipped. We sweep a range
of static rates for timing protection in the evaluation of SPEC
2006. Then, we set the static rate of ORAM requests as
800 CPU cycles, which minimizes the average performance
overhead of ORAM while maintaining zero-leakage over the
timing channel [16]. In other words, a data/dummy ORAM
request is launched by the ORAM controller every 800 cycles.



© sjeng h264ref namd Gmean
E R Interval — — = Data Total -eeeeeeer I === —_—Total Interval = = = Data Total ~**===** Interval = = =Data — Total
208
I P ——— . -
EM B ———— SHED memeswwmmTTTTTUTT === s
Z "0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Partitioning Level Partitioning Level Partitioning Level Partitioning Level
Fig. 14. Normalized access time with different partitioning levels using static partitioning (with timing protection)
16 - 0.8 — M Treetop-3 tiShadow Block+Treetop-3
14 ®Tiny Ustatic-4 @dynamic-3 Zinsecure 2 0.7  BTreetop-7 @ Shadow Block+Treetop-7
w12 306
£10 =05
£ = 0.4
Eo £03
[ZI =0.2
2 °© 0.1
0 0
Fig. 15. Slowdown with timing protection
Figure 13 illustrates the normalized execution time when
RD-Dup and HD-Dup are adopted, respectively. We can see =
that the ratio of DRI increases largely due to the injection §2
of dummy requests. Similar as Figure 13, we can see that =]
RD-Dup mainly reduces the DRI and HD-Dup mainly reduce E‘
the number of data requests. On average, RD-Dup reduces Tl
48% DRI, 2% data access time and 27% total execution time .
compared with Tiny ORAM, respectively. By contrast, HD- :_0
Dup reduces 7% DRI, 12% data access time and 11% total =z
execution time compared with Tiny ORAM, respectively. 3
The efficiency of static partitioning and dynamic partition- )

ing are also evaluated. Figure 14 illustrates the normalized
access time of sjeng, h264ref,namd and ten workloads’s
geometric mean after static partitioning is applied. The data
access time and DRI show a similar trend as that in Figure 9.
Since the ratio of DRI is much larger than that in Figure 9,
and thus the partition level should be lowered to facilitate RD-
Dup. Experiments show that the best partitioning level is 4,
which is less than that in Figure 9. For dynamic partitioning,
the trends of data access time and DRI are quite similar to that
in Figure 9. And 3-bit is still the best DRI Counter’s width to
achieve lowest total execution time.

Figure 15 illustrates the slowdown of Tiny ORAM, static-4
and dynamic-3 normalized to the insecure system. Since the
energy consumption of memory subsystem is proportional to
the number of accesses, the slowdown can also represent the
normalized energy consumption of memory system [16]. We
can find that both of the static or the dynamic partitioning
have a significant speedup over the Tiny ORAM. For static
partitioning and dynamic partitioning, an overage reduction
of 30% and 32% in execution time is achieved, respectively.
Compared to ORAM without timing protection, higher reduc-
tion is achieved because dummy ORAM requests are avoided.

D. Comparison with Previous Work

In this section, we present the combinational effect with
previous work and the comparison results with XOR compres-
sion [34]. For simplicity, we use dynamic-3 as a representative
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Fig. 17. Comparison with related work

of our design. We choose Treetop caching [15], as one of
the state-of-art ORAM optimizations, to illustrate the com-
binational effect. Since both XOR compression and treetop
caching adopt timing protection, we assume timing protection
is equipped in this section.

Shadow block can significantly increase the hit rate of on-
chip storage (stash, treetop cache). We use two schemes to
illustrate: “treetop-3” that caches top 3 levels of ORAM tree
(proposed in [15]), and “treetop-7”" as a comparison. Figure 16
illustrates the hit rate of treetop caching with/without shadow
block technique, respectively. The hit rates of treetop-3 and
treetop-7 increase to 2.20X and 2.17X on average with shadow
block, respectively. Since shadow block does not introduce on-
chip data cache, the increase is mainly caused by the shadow
block in the stash or treetop cache, which stores nonce before.

Figure 17 illustrates the speedup over Tiny ORAM when
shadow block, XOR compression or combinational optimiza-
tions are adopted, respectively. On average, shadow block
outperforms XOR compression by 23%. For some benchmarks
(sjeng, namd, astar), XOR compression shows limited ef-
fect while a considerable speedup with shadow block. When
shadow block is combined with treetop-3 and treetop-7, per-
formance is further optimized by 8.2% and 23%, respectively.
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Fig. 19. Speedup with different data ORAM sizes
E. Sensitivity Analysis

In this section, we will evaluate our design under different
configurations, including the different CPU types, and different
data ORAM sizes. For simplicity, we use dynamic-3 with
timing protection as a representative of our design.

Figure 18 illustrates the speedup over Tiny ORAM when
CPU types are single-core in-order and quad-core out-of-order,
respectively (details in Table I). For the O3 CPU, benchmarks
are simply duplicated to ensure that one task on each core.
Compared to the speedup when in-order core is adopted, the
speedup in O3 CPU reduces. Because of the higher memory
intensity in O3 CPU, the DRI is less in O3 CPU than that
of in-order CPU. Thus, dummy requests are less likely to
occur, which makes advancing data requests (i.e. RD-Dup) less
effective (see Figure 2 (d) and (e) for intuitions). However, for
both CPU types, HD-Dup is not affected and can reduce the
number of data ORAM requests.

Figure 19 illustrates the speedup with different ORAM
sizes. The impact of ORAM size changes is slight. And a
slight increase of speedup is observed with the increment of
ORAM sizes. This is because the smaller the ORAM size,
the shorter time the path read takes. Thus, the probability of
dummy accesses increases, which is beneficial to the RD-Dup.

VII. RELATED WORK

Since Goldreich and Ostrovsky first proposed Oblivious
RAM by [47], [48], enormous follow-up work has been
proposed to increase the efficiency of ORAM [10]-[15], [18],
[19], [34], [49], [50]. The most related work is about the
timing protection of ORAMs [16], the prefetching techniques
of ORAMs [17] and XOR compression [31] that utilizes
dummy blocks. Besides, many work have been proposed to
improve the ORAM efficiency based on novel threat models
or novel hardware [51]-[53].
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Fletcher et.al. propose a ORAM scheme, which can dynam-
ically adjust the rate to launch requests to protect the timing
channel of Path ORAM [16]. With a very limited leakage of
information, their scheme can save 30% performance overhead
compared to a perfect scheme (zero-leakage) with the same
power comsumption. In our work, our scheme is the zero-
leakage scheme, which is different from this work.

Yu et al. propose PrORAM [17] to implement dynamic
prefetching in Path ORAM. They observe that ORAM ac-
cesses conflict with conventional main memory prefetching.
To mitigate the impact, they propose dynamic prefetching, in
which multiple adjacent blocks are dynamically constrained
to be assigned to the same path. Their results demonstrate
that PrORAM can gain a twice performance improvement
than previous work on average. Techniques in PrORAM and
Shadow block can be combined for further improvement.

Stefanov et al. [12] and Devadas et al. [31] have pro-
posed XOR compression to reduce the bandwidth overhead
of ORAM. With XOR compression, all blocks along a path
are first XORed, and then only the XOR result is sent to
the processor. However, XOR compression requires computing
capability of DRAMs and has limited effect in reducing
memory access latency compared to our solution.

Besides the direct optimizations to the ORAM protocol
or the ORAM controller, ORAM is further optimized based
on new security assumptions or new technologies, such as
“trusted memory buffer/logic” or “mixed secure/insecure ap-
plications”. Aga et al. propose to further delegate trust to the
memory based on the 3D-stacked new structure of memories,
which enables the DRAM with cryptographic computation.
Their proposal can significantly reduce the ORAM overhead
[53]. Shafiee et al. further propose architectural optimizations
to the DRAM to mitigate the overhead of Path ORAM,
including split the ORAM buckets to parallelize the DRAM
accesses and propose secure buffer to further increase the
parallelism [52]. Wang et al. propose CP-ORAM to schedule
ORAM requests with normal request to maximize the server
performance [51]. They also propose D-ORAM to leverage
buffer-on-board (BoB) of DRAM as the secure delegator
to speedup ORAM accesses [54]. These optimizations are
orthogonal to our scheme and can be combined with ours.

VIII. CONCLUSION

In this work, we reveal an important fact that the access
order of the intended data block in each ORAM request can
impact its performance significantly. If the intended data block
is accessed earlier in an ORAM request, the intervals between
data ORAM requests can be reduced. Thus, to advance the
accesses of intended blocks without compromising security,
we propose a novel data duplication technique. The basic
idea is to duplicate data blocks in the dummy blocks located
closer to the root of an ORAM tree. These dummy blocks
with duplicated data are called shadow blocks. With the help
of shadow blocks, we introduce two duplication methods to
advance accesses of different blocks. Both of them can help
improve the ORAM performance and cooperate with each
other using an ORAM partitioning technique. Compared to the
state-of-the-art ORAM, our design can achieve a considerable
reduction in execution time.
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