
A Coordinated Tiling and Batching Framework for
Efficient GEMM on GPUs

Xiuhong Li1, Yun Liang1,∗, Shengen Yan2, Liancheng Jia1, Yinghan Li2
1 Center for Energy-efficient Computing and Applications, School of EECS, Peking University

2 SenseTime Incorporation

{lixiuhong,ericlyun,jlc}@pku.edu.cn,{yanshengen,liyinghan}@sensetime.com

Abstract

General matrix multiplication (GEMM) plays a paramount

role in a broad range of domains such as deep learning, scien-

tific computing, and image processing. The primary optimiza-

tion method is to partition the matrix into many tiles and

exploit the parallelism within and between tiles. The tiling

hierarchy closely mirrors the thread hierarchy on GPUs. In

practice, GPUs can fully unleash its computing power only

when the matrix size is large and there are sufficient num-

ber of tiles and workload for each tile. However, in many

real-world applications especially deep learning domain, the

matrix size is small. To this end, prior work proposes batched

GEMM to process a group of small independent GEMMs to-

gether by designing a single CUDA kernel for all of these

GEMMs.

However, the current support for batched GEMM is still

rudimentary. Tiling and batching are tightly correlated. A

large tile size can increase the data reuse, but it will de-

crease the thread-level parallelism, which further decrease

the optimization space for the batching. A small tile size can

increase the thread-level parallelism and then provide larger

optimization space for the batching, but at the cost of sac-

rificing data reuse. In this paper, we propose a coordinated

tiling and batching framework for accelerating GEMMs on

GPUs. It is a two-phase framework, which consists of a tiling

engine and a batching engine to perform efficient batched

GEMM on GPUs. Tiling engine partitions the GEMMs into

independent tiles and batching engine assigns the tiles to

thread blocks. Moreover, we propose a general programming

interface for the coordinated tiling and batching solution.

Finally, experiment evaluation results on synthetic batched

GEMM cases show that our framework can achieve about

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00

https://doi.org/10.1145/3293883.3295734

1.40X performance speedup on average over the state-of-the-

art technique. We also use GoogleNet as a real-world case

study and our framework can achieve 1.23X speedup.

CCSConcepts •Computingmethodologies→Massively

parallel algorithms; • Computer systems organization

→ Single instruction, multiple data;

Keywords GEMM, GPGPU, Tiling, Batching

ACM Reference format:

Xiuhong Li1, Yun Liang1,∗, Shengen Yan2, Liancheng Jia1, Yinghan

Li2. 2019. A Coordinated Tiling and Batching Framework for Effi-

cient GEMM on GPUs. In Proceedings of 24th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming, Washington,

DC, USA, February 16–20, 2019 (PPoPP ’19), 13 pages.

https://doi.org/10.1145/3293883.3295734

1 Introduction

General Matrix Multiplication (GEMM) is a matrix multipli-

cation and accumulation routine as follows:C = αA×B+βC,
where A ∈ RM×K , B ∈ RK×N and C ∈ RM×N are matrices,

and α and β are scalars. It is one of the most widely used
high-performance kernels in various domains such as deep

learning, signal processing, advanced physical analytics, and

astrophysics [4]. The wide adoption of GEMM and its huge

computation cost have led to a high demand to optimize

GEMM for high performance. From the hardware perspec-

tive, GPUs have been demonstrated to be able to provide

tremendous computation power for accelerating regular ap-

plications such as GEMM [21]. Furthermore, novel memory

architecture HBM2 and computation engine Tensor Cores

have been integrated into the latest NVIDIA Volta GPUs

for even higher FP16 GEMM performance [21]. From the

software perspective, a variety of optimization techniques

from algorithm level [1, 9, 10, 16, 20, 22] to compilation

level [5, 11, 26, 31, 33] have been developed. Many optimiza-

tion efforts have also been incorporated to the widely used

GEMM libraries, such as cuBLAS [21], CUTLASS [22], and

MAGMA [20] on GPU platforms.

For a single GEMM, a common solution is to partition

matrix C (M × N) into multiple tiles and each thread block
is responsible for a single tile. Each tile is independent of

other tiles, and the parallelism within and between tiles can

be exploited.M and N are closely related to the tile size and
the number of tiles. They are crucial for performance as they

229

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Xiuhong Li et. al.

impact the thread-level parallelism (TLP). The workload of a

single tile is to accumulate all the sub-matrix multiplication

results along the K-dimension. K determines the workload
of a tile and has impacts on the instruction-level parallelism

(ILP) within a single thread [21]. In general, only when M ,
N , and K are all large enough, the two kinds of parallelism
can be fully exploited and the peak performance can be

achieved. For example, when M = 5120,N = 5120,K =
5120, the performance of FP32 GEMM in cuBLAS can be up

to 14TFlops, which is about 93% of the peak performance

(15TFlops) on NVIDIA Volta 100 GPUs.

However, in many real-world applications such as deep

learning and astrophysics, the matrix size is small [2, 3].

Although the existing GEMM software libraries work well

for large matrices, they are inefficient for small matrices.

For example, in Google-Net [25], there are 57 convolution

operations, and a common algorithm to compute convolution

is to transform it to GEMM. For convolution based GEMM,

M refers to the number of filters, K refers to the size of filter
and the number of channels, and N refers to the feature
map and batch size. In general, all of these matrices’ M,N
and K are less than 1000, and even half of these matrices’M
are less than 100. Thus, even though we increase batch size,

M and K is still small. For example, for the convolution in
inception3a/5x5reduce, after transforming it to GEMM, its

size is M × N × K = 16 × 784 × 192, the FP32 performance
on Volta 100 GPU is only 0.6TFlops, which is less than 1%
of the peak performance. This is because the matrix is small

and there are no enough tiles (thread blocks) to fully occupy

the GPU after tiling.

To this end, batch execution of a group of small GEMMs

has been proposed as an effective solution by merging small

independent GEMMs into a single CUDA kernel [2, 21].

NVIDIA designs a batchedGEMMAPI (cublasSдemmBatched)
in cuBLAS [21], however, it can only batch the GEMMs with

the same size (same M , N , and K). Unfortunately, in real-
world cases, thematrix sizes of the batched GEMMsmay vary

hugely. To solve this, MAGMAproposes a batched-GEMM so-

lution [2], called vbatched-routine, which can batch GEMMs

with different sizes. It uses the gridDim.z dimension in CUDA

grid to batch the small GEMMs. However, the support is still

rudimentary. First, it neglects the impacts of tiling strategy.

The tiling strategy suited for a single GEMM case is not

necessarily good for batched GEMMs scenario. Second, the

batching method can only increase the number of blocks (i.e.

TLP), but cannot help to improve ILP for the case where K
is small.

To fully support batched GEMMs with different sizes, the

primary idea is to design a single CUDA kernel for all multi-

ple GEMMs. The fundamental problems are tiling, batching,

and their synergistic interaction. Tiling means to tile each

GEMM into many tiles. We allow different GEMMs to have

different tiling strategies instead of sharing a uniform tiling

strategy. How to unify different tiling strategies into a single

kernel is a challenge. Batching means to assign the above

tiles to thread blocks. We can assign one or multiple tiles to

a thread block. There is a very large space to explore. How

to determine the batching method with the consideration of

both TLP and ILP is another challenge.

To solve the above challenges, we propose a two-phase

batched GEMM framework on GPUs, consisting of two key

components: a tiling engine and a batching engine. Our con-

tributions can be summarized as follows:

• We propose a coordinated tiling and batching frame-

work for GEMM on GPUs.

• We design a suite of tiling strategies dedicated for

batched GEMM scenario and a tiling strategy selection

algorithm to determine the tiling strategy for each

GEMM.

• Wedesign a batching algorithm to assign tiles to thread

blocks by balancing the TLP and ILP.

• We design a general and flexible programming inter-

face for batched GEMM.

Evaluation results on synthetic batchedGEMMcases demon-

strate the proposed coordinated tiling and batching frame-

work can achieve 1.40X speedup on average over the state-

of-the-art implementation (MAGMA [20]) on NVIDIA Volta

100 GPU. Besides, we use GoogleNet as a real-world case

study and our framework can achieve 1.23X speedup.

The rest of this paper is organized as follows. Section 2

presents the background of optimization for single GEMM

and the baseline GPU architecture. Section 3 introduces the

motivation of our proposed framework. Section 4 and Sec-

tion 5 presents the details of the tiling engine and batching

engine, respectively. Section 6 describes the programming

interface. Section 7 evaluates the proposed framework. Sec-

tion 8 discusses the related work. Section 9 concludes the

paper.

2 Background

In this section, we first introduce the preliminary of GPU

architecture, which is the basis for optimization on GPUs.

Then, we describe the GEMM design methodology and ex-

isting popular optimization techniques on GPUs.

2.1 GPU Architecture

GPUs are becoming the most popular hardware accelerators

for a wide range of applications, such as stencil, graph, fi-

nance, and machine learning. One GPU is composed of multi-

ple StreamMultiprocessors (SMs) and they are connected with

shared off-chip L2 cache and device memory (also known as

global memory) via interconnection network. One SM con-

tains large amounts of SIMD execution units: INT32 Cores,

FP32 Cores, FP64 Cores, Tensor Core, and Special Function

Units. The on-chip memory hierarchy consists of register file,

shared memory, and L1 caches. On the latest NVIDIA Volta

100 GPUs, within each SM, the register file size is 64k 32-bit

230

Batched GEMM on GPUs PPoPP ’19, February 16–20, 2019, Washington, DC, USA

A RegisterShared
Memory

Streaming Multiprocessor

Shared Memory Blocking

Accumulate

SP Unit

Register Blocking
B

A

B Block(1,0)

C

(a) GEMM tiling implementation. (b) Workload of each iteration along K-dimension.

BY

BK

BX
Block(N,0)Block(0,0)

Block(1,1) Block(N,1)Block(0,1)

Block(1,M) Block(N,M)Block(0,M)M

K

N

K

Figure 1. Basic GEMM implementation on GPUs.

registers and the shared memory size is configurable up to

96KB. The maximum registers per thread is 255, and they are

private for each thread. If one thread needs more registers,

the excess will be spilled into global memory. Shared mem-

ory is shared by the threads within a thread block. Shared

memory is relatively slower than register, but much faster

than global memory. Thus, proper usage of on-chip regis-

ter and shared memory to exploit data reuse and locality is

crucial for performance [12, 13, 15, 24, 27–30].

Figure 2. Code skeleton for a single GEMM.

2.2 General Matrix Multiplication

GEMM (C = α ×A×B+ β ×C) has a regular and predictable

data access pattern, and thus is suited for GPU acceleration.

As shown in Figure 1(a), MatrixC is first divided intomultiple

tiles, and each thread block is responsible for a tile [10, 16,

26]. Tiling is an effective method to exploit parallelism on

GPUs [23]. After tiling, a matrix multiplication naturally

corresponds to a two-dimension grid. The computation of a

thread block tile will be further decomposed into warps and

threads.

Given a GEMM with size M × N × K , the C matrix is
partitioned into multiple tiles with size BY ×BX . Each tile of
C needs to access a whole row section of A matrix with size

BY × K and a whole column section of B matrix with size
K×BX in Figure 1(a). However, the whole row band ofA and
column band of B are too large to be accommodated in the

shared memory and register file. To use the on-chip memory,

the workload along K-dimension has to be partitioned into
many segments as shown in Figure 1(b). Each segment of

the row section of A is called an A tile with size BY × BK ,
and each segment of the column section of B is called a

B tile with size BK × BX . The final result can be obtained
by accumulating the partial result of each segment along

K-dimension.
In this paper, we employ the classic techniques for GEMM

such as register blocking technique and software pipelin-

ing [5, 20, 22]. Figure 2 shows a code skeleton for single

GEMM using tile size with {BY ,BX ,BK}={64, 64, 8}, and
the number of threads within a block is 64. The reference

for array is left blank for simplicity. We first define register

block for Tile A, B and C from Line 1 to 4. Then, we define

shared memory as the double buffer from Line 5 to 7. Next,

it is the main computation along K-dimension from Line 8
to 26. Each iteration, we access an A tile and a B tile along

K-Dimension, and then compute the partial multiplication
result. Figure 1(b) shows the workload of each iteration. We

first load A tile and B tile from global memory to shared

memory 1 , and then load the tiles from shared memory to

register 2 . Finally, we perform matrix multiplication of this

tile 3 . FMA instruction in line 17 can perform fused multi-
ply and add operations. Thus, the partial result of the current

231

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Xiuhong Li et. al.

(0,0,0) (1,0,0)

(0,1,0) (1,1,0) (2,1,0)

(0,2,0) (1,2,0) (2,2,0)

A

B

A

B

Grid

(3,0,0)

(3,1,0)

(3,2,0)

(0,3,0) (1,3,0) (2,3,0) (3,3,0)

(0,0,0) (1,0,0) (2,0,0)

(0,1,0) (1,1,0) (2,1,0)

(0,2,0) (1,2,0) (2,2,0)

(3,0,0)

(3,1,0)

(3,2,0)

(0,3,0) (1,3,0) (2,3,0) (3,3,0)

(0,0,0) (1,0,0) (2,0,0)

(0,1,0) (1,1,0) (2,1,0)

(0,2,0) (1,2,0) (2,2,0)

(3,0,0)

(3,1,0)

(3,2,0)

(0,3,0) (1,3,0) (2,3,0) (3,3,0)

A

B

(2,0,0)

blockIdx.z=0 blockIdx.z=1 blockIdx.z=2

(a) Different GEMMs share the same tile size.

A

B

A

B

Grid

A

B

blockIdx.z=0 blockIdx.z=1 blockIdx.z=2

(b) Different GEMMs apply different tile size.

Figure 3. Challenges for design a single kernel for batched GEMM.

tile can be accumulated directly. In this way, the thread level

parallelism between the threads can be exploited.

In addition, the instructions are pipelined to leverage in-

struction level parallelism within a single thread [21, 32].

Double buffer is employed for both shared memroy and

registers as shown in Figure 2. More specifically, when we

complete the computation of the current A(B) tile along K-

dimension 3 , we can load the next A(B) tile from global

memory to shared memory 2 . This allows us to hide the

latency of loading from global memory. Register block is

doubled, too. It allows to hide most of the latency of loading

from shared memory, because one register block can be read

while at the same time loading the next.

3 Challenge and Motivation

M and N are related to tile size and number of tiles, and they
further have impacts on thread-level parallelism. Only when

M and N are large enough, there are enough tiles to exploit
thread level parallelism and the tile size is large enough to

exploit data reuse within a tile. K decides the workload of a
tile and further has impacts on instruction-level parallelism.

Only whenK is large enough, there are enough memory load
and computation that can be pipelined. In summary,M and
N are closely related to thread-level parallelism, while K is
related to instruction-level parallelism. For a small GEMM, in

spite of algorithm design and performance tuning, it cannot

fully exploit the above two kinds of parallelism. As a result,

batch execution of many small GEMMs is proposed.

Given a batch of GEMMs, in default execution mode, each

GEMM corresponds to a kernel and they execute one by

one. In prior works, there are two optimization directions.

The first one is concurrent kernel execution based on the

stream interface in recent NVIDIA GPUs [14, 17–19, 21].

Each GEMM is assigned to a different stream. For the GEMMs

assigned to different streams, there are opportunities for

them to execute simultaneously. However, the concurrent

execution relies on kernel scheduling and the performance

speedup is very limited [14, 18] due to coarse-grained sched-

uling overhead. The second one is to design a single kernel

for all of the GEMMs [2]. In this paper, we focus on the

second implementation.

NVIDIA proposes a batched GEMM API in cuBLAS li-

brary called (cublasSдemmBatched) [21]. However, this API
can only batch the GEMMs with the same size (same M ,
N , and K). Unfortunately, in real-world cases, the matrix
sizes of the batched GEMM may vary hugely. To this end,

MAGMA group [2] proposes a scheme called vbatch to de-

sign a single kernel to batch the GEMMs with different sizes.

As described in Section 2, for a single GEMM, the task of the

tiles is mapped to a 2D grid, whereдridDim.x andдridDim.y
denotes the number of tiles in a row and column, respec-

tively, and дridDim.z = 1. The vbatch method expands the
Z -dimension of GPU kernel grid, and different GEMMs are
allocated to a unique index inZ -dimension, andдridDim.z is
equal to the number of small GEMMs. We use an example to

explain this in Figure 3(a). We have three GEMMs, their sizes

(M ×N ×K) are 16× 32× 128, 64× 48× 64, and 64× 64× 128.
We use the same tile size 16 × 16 for the three GEMMs. The

first GEMM is partitioned into 1 × 2 tiles, the second GEMM

is partitioned into 4 × 3 tiles, and the third GEMM is parti-

tioned into 4 × 4 tiles. The tuple within each thread block

is the block index (blockIdx .x ,blockIdx .y,blockIdx .z). The
three GEMMs correspond to blockIdx .z = 0, blockIdx .z = 1,
and blockIdx .z = 2, respectively. The size of the 2D slice is
determined by the maximum matrix multiplication (4 × 4),

and thus some of the blocks are bubble blocks (the dashed

line blocks in Figure 3(a)).

There are two challenges when designing a single kernel

for batched GEMM, which are left unsolved in MAGMA

vbatch design. The first challenge comes from the fact that

different GEMMs may have different tile sizes. A thread

block is responsible for a tile. Different tile sizes may need

different thread blocks. In the CUDA programming interface,

all the thread blocks should use the same block size and the

block size is determined by the maximum tile. This will make

some of the threads in the blocks for the small tiles idle. For

example, when we change tile size of the third GEMM to

32 × 32, shown in Figure 3(b). A 32 × 32 tile needs two times

232

Batched GEMM on GPUs PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Block(0,0) Block(1,0) Block(N,0)

Block(0,M) Block(1,M) Block(N,M)
…

Block(0,0) Block(1,0) Block(N,0)

Block(0,M) Block(1,M) Block(N,M)
…

Block(0,0) Block(1,0) Block(N,0)

Block(0,M) Block(1,M) Block(N,M)

…

Tiling Batching

Figure 4. Overview of our proposed two-phase batched GEMM framework.

of threads than a 16 × 16 tile, which makes some of threads

in the blocks assigned to small tiles idle (the dashed line

threads). Besides, different GEMMs may have different K ,
and K decides the workload of each tile. Thus, there exists
heavy workload imbalance between different thread blocks.

In Figure 3(b), for the second GEMM, its K = 64 is small.
For the thread blocks to execute its tiles, there is no enough

workload along the K-dimension to exploit the instruction-
level parallelism. Thus, how to assign tiles to thread blocks to

improve instruction-level parallelism is the second challenge.

To address the above challenges, we first decompose the

batched GEMM into two phases: tiling phase and batching

phase shown in Figure 4. Tiling phase will partition each

GEMM into many tiles, and batching phase will assign tiles

to blocks. In the tiling phase , we design a series of tiling

strategies dedicated for the batched GEMM scenario. Then,

we present a tile strategy selection algorithm to determine

tile strategy for each GEMM in batched GEMM scenario.

In the batching phase, we allow a thread block to execute

more than one tiles with small K one by one to improve
instruction-level parallelism. Then, we design a batching

algorithm to determine the batching solution and a general

and flexible programming interface for any batching schemes.

We will introduce them in details in Section 4 and Section 5,

respectively.

4 Tiling Engine

Tiling is an important technique for optimizing parallelism

and single thread performance for GEMMs on GPUs. When

we increase the tile size, the number of tiles decreases and

this further leads to low parallelism. When we decrease the

tile size, it will lead to low data reuse within a tile. Thus, the

goal of tiling engine is to strike a balance between parallelism

and single thread performance.

We find that the optimal tile size for a single GEMM is

not suited for the GEMM in the batched GEMM case. The

reasons come from two aspects. Firstly, different GEMMs

may prefer different tile size in the batched GEMM case.

Different tile size need different block size (i.e. number of

threads within a thread block). As discussed in Section 3, this

will result in some of the threads idle. Secondly, it is more

complex to select a tile size for the batched GEMM case. For

a single GEMM, its tile strategy is determined by the matrix

size. In the case where the matrix size is small, the optimal

tile strategy is always prone to small tile. However, in the

batched GEMM case, it depends on not only the size of each

GEMM but also how many GEMMs are batched together.

Thus, there is a larger design space to explore.

To solve the above two issues, we first design a novel tiling

strategy for batched GEMM scenario. We design a unified

thread structure for all the tiling strategy.With unified thread

structure, we use the same thread block size for different

tile sizes, but succcessfully alleviate idle threads. Then, we

design a tiling algorithm to select a good tiling strategy for

each GEMM.

4.1 Tiling Strategy

Table 1 lists the common tiling strategy for single GEMM

scenario used in prior works [20–22]. It totally gives six

tiling strategies from small to huge. A tiling strategy has

two key components: the tile size (BY × BX × BK) and the
number of threads for the tile. C tile is further partitioned

into many sub-tiles, and each thread is responsible for a

sub-tile. Figure 5 shows the tiling hierarchy from thread

block, warp to thread. The sub-tile size of each tiling strategy

is shown in the last column of Table 1. For single GEMM

scenario, tile size and the number of threads for the tile can

be calculated according to the global memory bandwidth and

shared memory bandwidth [26]. For example, for the small

tiling strategy, the tile size is 16 × 16 × 8, and each thread is

responsible for a 4 × 2 sub-tile. The number of threads the

tile needs is 16×164×2 = 32.

To avoid the thread idle issue, the tiling strategies for

batched GEMM shouldmake sure that the thread block size is

the same for all the tiling strategies. To this end, we design a

series of tiling strategies dedicated for batch GEMM scenario

shown in Table 2. The key idea is the unified thread structure.

For different tiling strategies, we adjust the sub-tile size to

ensure that all the tiling strategies share the same number

of threads (either 128 or 256).

233

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Xiuhong Li et. al.

Matrix A

Matrix B

Block

Matrix C

Block(0,0) Block(1,0) Block(N,0)

Block(0,M) Block(1,M) Block(N,M)

…

Grid

Warp

Block

Warp

Thread

Figure 5. Tiling hierarchy from thread block, warp to thread.

Tiling Strategy BY BX BK Threads Sub-Tile Size

small 16 16 8 32 4x2

medium 32 32 8 64 4x4

large 64 64 8 64 8x8

tall 128 64 8 128 8x8

wide 64 128 8 128 8x8

huge 128 128 8 256 8x8

Table 1. Tiling Strategy for single GEMM scenario.

Moreover, the number of threads within a thread block

(denoted asT) is also a key factor to both kinds of parallelism:
TLP and ILP. On one hand, when T increases, there are more

threads to exploit TLP. On the other hand, when T decreases,

the workload of each thread (i.e. sub-tile size) will increase.

The last two columns in Table 2 show the sub-tile size whenT
is 128 and 256. The sub-tile size directly affects the workload

of each thread, and thus further affects the ILP. Thus, for each

tiling strategy, we implement multiple versions to provide

more choices for TLP, such as 128-thread version and 256-

thread version. One version is selected for a certain GEMM

case by our tiling algorithm.

4.2 Tiling Algorithm

For single GEMM, the tiling strategy is not necessarily suited

for batched GEMM scenario. We use GEMMM = N = K =
1024 as an example. For this case, we cannot select huge tiling

strategy as shown in Table 1 with the consideration of TLP.

This is because if we select huge tiling strategy, the GEMM

can be partitioned into 1024×1024128×128 = 64 tiles (i.e. 64 blocks).

In general, it cannot fully occupy the current GPUs with

many SMs (e.g. 80 SMs in Volta 100 GPUs). However, when

we consider to batch the execution of multiple GEMMs, it is

possible that the huge tiling strategy can give high number

of tiles and thread blocks. Thus, how to select tiling strategy

depends on how many GEMMs are batched together and

what is the size of each GEMM. Next, we will first model

the effects of tiling strategy on parallelism and single thread

performance, respectively. Then, we design a tiling algorithm

for batched GEMM case relying on the models.

Name BY BX BK
Sub-Tile

(128-Thread)

Sub-Tile

(256-Thread)

small 16 16 8 2x1 1x1

medium 32 32 8 4x2 2x2

large 64 64 8 8x4 4x4

tall 128 64 8 8x8 8x4

wide 64 128 8 8x8 8x4

huge 128 128 8 16x8 8x8

Table 2. Tiling Strategy for batched GEMM scenario.

4.2.1 Parallelism Model

We use thread-level parallelism (TLP) to quantize the paral-

lelism, and it is the number of threads for all the tiles of all

of the GEMMs. For a given tiling strategy (BY × BX × BK)
and the number of threads (T) per thread block, TLP can be
calculated in the following way:

TLP =
∑

i

Mi × Ni

BYi × BXi

×T (1)

whereMi and Ni are the matrix size of matrix C of the i-th
GEMM, BYi and BXi are the tiling strategy selected for this

GEMM, and T is the number of threads in a thread block.
We can find that on the whole, the parallelism decreases as

tile size BY × BX increases. Besides tile size, the number
of threads T can also affect parallelism. When T increases,
there are more threads to exploit TLP.

4.2.2 Single Thread Performance Model

We use arithmetic intensity to model single thread perfor-

mance. Arithmetic intensity is the ratio of the number of

arithmetic instructions to memory instructions. A large arith-

metic intensity means there are more arithmetic instructions

per byte of memory request. It indirectly models the data

reuse. The number of load instructions for each thread can

be calculated as follows:

Num_Load =
BY × BK + BK × BX

Load_width ×T
(2)

where the numerator means the number of float data within

the tile, Load_width means the number of float data a load
request can load one time. Load_width of a 16-byte load
request is 16/sizeo f (f loat) = 4. The number of arithmetic
FMA instructions for each thread can be approximated as

follows1:

Num_FMA ≈
BY × BX × BK

T
(3)

So, the ratio of arithmetic instruction to load instruction is

as follows:

Num_FMA/Num_Load =
4 × BY × BX

BY + BX
(4)

1There are some arithmetic instructions for auxiliary computation, such as

computing offset.

234

Batched GEMM on GPUs PPoPP ’19, February 16–20, 2019, Washington, DC, USA

To hide the memory latency, we prefer large arithmetic in-

tensity. When BY and BX increase, the ratio increases. BK
can affect the workload of each tile, and further the number

of instructions within the main loop in Figure 2. Besides tile

size, the number of threads T can also affect the arithmetic
intensity. WhenT decreases, the number of instructions will
increase and it will provide more chance to hide memory

latency. In this work, we only explore BY and BX and set
BK as a constant (8).

4.2.3 Algorithm Design

Our algorithm gives more priority to TLP and then try to

improve ILP if possible. Thus, we first consider 256-thread

version tiling strategies shown in Table 2 for all the GEMMs.

This is because 256-thread version has more TLP compared

with 128-thread version. The algorithm consists of three

steps:

1. We first obtain available tiling strategies for eachGEMM.

For each GEMM, its available ting strategies are the

tiling strategies in Table 2 but BY ≤ M and BX ≤ N .
For each GEMM, we put its available tiling strategies

into a priority queue. The smaller the tiling strategy

is, the higher its priority is.

2. We pop one tiling strategy for each GEMM from their

own priority queue. Then, we calculate the overall TLP

for all the GEMMs according to Equation 1.

3. We compare the TLP with a threshold. If TLP is larger,

we will try larger tiling strategy to improve ILP by

repeating step 2. Otherwise, we will select the current

tiling strategy as the final solution.

Note that there are two exceptions. Firstly, if there exist a

GEMMwhich only has one tiling strategy in its own priority

queue, we perform top operation instead of pop operation

to guarantee every GEMM has an available tiling strategy at

least. Secondly, if all GEMMs have only one tiling strategy in

their priority queues, we switch to 128-thread version tiling

strategies and repeat step 2. The TLP threshold in Step 3 is

set empirically. It depends on the specific GPU architecture.

On each platform, we determine the threshold by starting

with a huge GEMM case and decreasing the TLP iteratively.

We choose the inflection point with large performance degra-

dation as the TLP threshold. The threshold is determined

offline and it only needs to be done once for a particular

platform.

We use an example to illustrate the algorithm. Assume

that we have three GEMMs and the size of the three GEMMs

is 16× 32× 128, 64× 64× 64, and 256× 256× 64, respectively.

We first obtain available tiling strategies for each GEMM

according to step 1. For the first GEMM, it has two available

tiling strategies: small and medium. For the second GEMM,

it has three available tiling strategies: small, medium, and

large. The third GEMM has all six tiling strategies in Table 2.

Then according to step 2, we pop the tiling strategy pri-

ority queues, and the current tiling solution is (small, small,

small). Next, we calculate the overall TLP as 70144. We com-
pare TLP with an architecture-related threshold, which is
set empirically. On NVIDIA Volta 100 GPUs, we set it to

65536. In this case, TLP is larger than the threshold, this
means we can choose larger tile size to trade TLP for ILP by

jumping back to step 2. For all of the three tiling strategy

priority queues, we pop a new tiling strategy. Note that the

first GEMM has only one element in its priority queue, so its

priority queue will not be popped. Then, the new solution is

(small, medium, medium). TheTLP is 17920, and it is smaller
than the threshold. Thus, (small, medium, medium) is chosen

as final tiling solution.

5 Batching Engine

After the tiling phase, the batch of GEMMs are transformed

to the batch of tiles. In the prior GEMMdesign, a thread block

is responsible for a single tile. In our design, a thread block

is responsible for multiple tiles to exploit instruction-level

parallelism for the tiles especially whenK is small. Thus, how
to assign tiles to thread blocks is a challenge. Obviously, there

exists a very large exploration space. Similarly, our batching

algorithm tries to strike a balance between TLP and ILP. To

this end, we first propose two heuristics: threshold batching

and binary batching. The first one gives more priority to TLP,

while the second one gives more priority to ILP. They both

rely on an architecture dependent parameter θ to quantize
the workload of each thread block. We find that if the total

K dimension of all the tiles assigned to a thread block is
larger than a threshold θ , the benefit of batching tiles is
not significant. Then, we design an algorithm to select one

method from the above two heuristics based on random

forest.

Threshold Batching. Threshold batching gives more prior-

ity to TLP. It first guarantees sufficient high TLP, and then

tries to improve ILP. To meet the requirement of ILP, we

make sure the workload of each block is not less than θ .
Each time, we assign tiles to a new thread block. Before

assigning, we compute the sum of the number of tiles unas-

signed and the number of assigned thread blocks. The sum

multiplies the number of threads in a thread block to denote

the TLP . If TLP is larger than the half of the threshold used
in tiling engine, we assign tiles to the new thread block until

the sum of their K is larger than θ . Otherwise, each of the
unassigned tiles will be assigned to a thread block.

Binary Batching. Compared with threshold batching, bi-

nary batching gives more priority to ILP. To prune the explo-

ration space and decrease the complexity of batching scheme,

we only consider to batch two tiles at most each time. We

combine two tiles as a pair {i,j}, and the batching problem

235

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Xiuhong Li et. al.

can be converted to the following problem:

minimize | |
∑

pair

(Ki + Kj − θ)| | (5)

where Ki and Kj is the K value of tile i and j. To reduce the
overhead of batching algorithm, we sort the tiles in ascending

order of K . For a thread block, we assign the first tile (with
minimal K) and the last tile (with maximal K).
We have presented two different batching heuristics: thresh-

old batching and binary batching. For the case where the

batch size and the size of each matrix are fixed, for example

the training process of a deep neural network, we can try

both two batching heuristics and choose the better one. For

the case where the batch size and the size of each matrix vary,

we present a light-weight on-line batching policy to choose

one from the two above heuristics. We use random forest

to provide on-line selection. Random forest is an ensemble

machine learning method for classification, regression and

many other tasks. A random forest consists of multiple deci-

sion trees, and each tree is a weak learner. For random forest,

the input feature is very important for prediction accuracy.

We choose the average value ofM,N ,K and batch size B as
prediction feature. For each tree, each node makes choice by

performing a comparison. For example, for the first tree, the

root node comparesM with a value within this node. IfM is
larger than this value, the tree goes deeper along the right

branch. Then, the second node compares K with a value
within this node. Then, it arrives at a leaf node according

to the comparison result. The leaf node is a vector with two

elements. Each element corresponds to a batching heuristic,

and the value represents the probability to choose this . We

obtain the arrived leaf nodes of all decision trees and sum

them up. Then, we choose the batching heuristic that has

the maximal probability.

We use random forest algorithm as it is accurate and fast.

It only needs 7-8 comparisons on average with negligible

overhead.We form a training set with more than 400 samples.

We test all the batching algorithms and label the sample with

the best algorithm. The entire training process takes about 2

hours. It is possible to use other algorithms. We leave a more

thorough investigation for future work.

GEMM

Tile

Y_Coordinate

X_Coordinate

GEMM 0

GEMM 1

Tiling Strategy

Tiling Engine Batching Engine Programming Interface

Block(0,0)

Block(0,1)

Block(1,0)

Block(1,1)

Block(0,0)

Block(0,1)

Block(1,0)

Block(1,1)

Figure 6. Auxiliary data to store the batching scheme.

6 Programming Interface

Finally, we develop a programming interface for batched

GEMMs based on persistent threads [6]. Given a batching

scheme, we rely on some auxiliary data structures to store

the batching scheme shown in Figure 6. More clearly, we

need five arrays to record the tiling and batching scheme.

We first use a "Tile" array to record the Tile index assigned

to each block, and the size of this array is Block_NUM + 1,
where Block_NUM is the number of thread blocks. The tiles
assigned to each block can be calculated by Tile[block_id +
1] −Tile[block_id]. The second array we need is a "GEMM"
array to record which GEMM the tile comes from. "Tiling

strategy" array is used to record the tiling strategy for the

GEMM that this tile comes from. We use 0-11 to represent

the 12 tiling strategies in Table 2. Besides, we need another

two arrays "Y_Coordinate" and "X_Coordinate" to record the

position of the tile. Through the five auxiliary arrays, we can

describe any possible batching schemes.

We use two GEMMs as an example, and a possible tiling

and batching solution is presented in Figure 6. Assume that

after tiling, there are two 128 × 128 tiles for the first GEMM

and eight 128×64 tiles for the second GEMM. After batching

algorithm, our final solution is that we have six thread blocks:

two for the first GEMM and four for the second GEMM. In

this case, for the third block, we can access "Tile" array to

decide that it has two tiles, marked as gray in Figure 6. We

still use the third block as an example. It has two tiles and

their index is from the interval [2,4) in "Tile" array, and the

two tiles come from GEMM 1. The tiling strategy for GEMM

1 is strategy 5 according to the "Tiling strategy" array. The

coordinate of the two tiles is (0, 0) and (0, 1), respectively.
Figure 7 shows the code skeleton of the programming

interface. It first obtain the tiles assigned to each thread block

by accessing Tile array from Line 1 to 3. Then, for each tile,

we access GEMM array to obtain the GEMM information of

this tile Line 6 to 13. Then, we can get the position coordinate

of this tile within its GEMM from Line 14 to 15. Finally, we

access the Tiling strategy array to get the selected tiling

strategy for this tile From line 16 to 18. After obtaining these

information, the code to finish the workload of a tile is the

same with algorithm in Figure 2.

7 Evaluation

In this section, we evaluate our proposed batched GEMM

framework. We first evaluate tiling engine alone and then

evaluate the coordinated tiling and batching engines together.

Our evaluation is performed in the NVIDIA latest Volta 100

GPUs [21]. In the evaluation, the TLP threshold is set as

65536, and the threshold for threshold batching heuristic is

set as 256 on Volta 100 GPUs.

To evaluate our work from a broad scale, we use synthetic

batched GEMM cases with different batch sizes and different

M, N, and K as input. BecauseMAGMA is better than cuBLAS

236

Batched GEMM on GPUs PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Figure 7. Batching programming interface based on the

auxiliary data.

in the batched-GEMM cases with differentM , N and K , we
mainly compare with MAGMA [20] in the following evalua-

tion with synthetic batched GEMM cases. MAGMA only pro-

vides support for batched GEMM by expanding дridDim.z
dimension without the fine-grained tiling and batching opti-

mizations.

Then, we demonstrate our framework can achieve per-

formance speedup in real-world case: Google-Net. Finally,

we evaluate the portability of our framework on multiple

GPU architectures, such as Pascal architectures and Maxwell

architecture.

7.1 Tiling Result

In the evaluation, Figure 8 shows the contribution of tiling

engine. This figure contains a 2-D histogram arrays. The

histograms in the same column have the same batch size,

and the histograms in the same row have the same M and
N . For example, the histogram in the second row and third
column means the batch size is 16 andM = N = 256. Then,
let’s focus on a single histogram. The X-axis means that K
increases from 16 to 2048 in logarithmic coordinate.

We can find that tiling engine can achieve about 1.20X per-

formance speedup on average. We can have two important

observations from the experiment results. First, we find that

whenM , N and K are fixed, the performance benefits from
tile engine decreases as the batch size increases. This is be-

cause, when the batch size is small, the impact of tile selection

algorithm on TLP is significant. For example,M = N = 128
and batch size is 4, if we select tile size 128 × 128 × 8, there

are only 4 blocks in total, and most of GPU is idle. When we

choose small tile 16 × 16 × 16, we can obtain 256 blocks in

total, which can occupy most of GPU. Similarly, when batch

size is fixed, the performance benefits from tile engine also

decreases as theM and N increase.
Second, the impacts of K decreases asM and N increases.

WhenM = N = 128, the contribution of tiling engine varies
obviously as K increases. However, whenM and N increases
and batch size increases, the variance of contribution de-

creases. On the whole, the effects of tile engine is obvious

whenM and N are small or batch size is small.

7.2 Tiling and Batching Result

Figure 9 shows the contribution of batching engine. We can

find that the coordinated tiling and batching framework can

achieve 1.40X performance speedup on average. We have

three important observations from the results. First, the ben-

efit from batching engine is consistent as the batch size in-

creases, and our batching methodology can have significant

performance improvement. This mainly owes to the coordi-

nated design of tiling and batching. When batch size is small,

tiling engine can choose small tiling strategies and batch-

ing engine decrease batching depth along K dimension to

guarantee thread-level parallelism. When batch size is large,

batching engine can improve batching depth along K dimen-

sion to provide more chances to improve instruction-level

parallelism.

Second, when K is small, the batching contribution is
always higher. In fact, our flexible batching methodology

can exploit both thread-level parallelism and instruction-

level parallelism. By comparison, the MAGMA work can

only improve thread-level parallelism but neglect instruction-

level parallelism. When K is small, our flexible batching can
batch tiles along K dimension to improve the workload of
a thread block, which can further provide more chance to

pipeline the memory accesses with computation. Thus, when

K is small, the improvement is significant.
Third, on the whole the batching benefits decrease asM

and N increase. This is because the motivation of batching
is that the matrix is small. WhenM and N are large enough,
the single GEMM performance is large enough.

7.3 Real-world Google-Net Result

The modern CNN models introduce many non-linear struc-

tures, such as fan-structure.More specifically, the fan-structure

always spawns a few independent branches. The GEMMs in

different branches can be batched together using our tech-

nique. The fan-structure is popular in other state-of-the-art

237

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Xiuhong Li et. al.

M,N=1024
K increase from
16 to 1024

M,N=512
K increase from
16 to 1024

M,N=256
K increase from
16 to 1024

M,N=128
K increase from
16 to 1024

Batch Size4 8 16 32 64 128 256
Figure 8. Tiling contribution on performance improvement.

Batch Size4 8 16 32 64 128 256

M,N=1024
K increase from
16 to 1024

M,N=512
K increase from
16 to 1024

M,N=256
K increase from
16 to 1024

M,N=128
K increase from
16 to 1024

Figure 9. Batching contribution on performance improvement.

CNN models such as Squeeze-Net [8] and ResNet [7]. We

use Google-Net [25] as an example to demonstrate that our

proposed framework can help for this case.

GoogleNet contains 57 convolution operators. For each

convolution operator, we have obtained the optimal imple-

mentation algorithm off-line. In the forward phase, we can

directly select the optimal implementation algorithm for

each convolution. Then, we use cuDNN implementation as

238

Batched GEMM on GPUs PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Figure 10. Batched GEMM performance speedup over state-

of-the-art implementation on Google-Net inception layers.

the baseline. In addition, we also use stream interface to con-

currently execute the convolution in each branch to further

optimize the baseline version. We use our proposed frame-

work to batch the four GEMMs in each inception layer. The

precision we use in this experiment is FP32. The execution

time of baseline version, baseline with stream optimization

version and our work for a inference pass of the Google-Net

is 3.18ms, 2.41ms, and 2.01ms, respectively.

Figure 10 shows the performance speedup of each incep-

tion layer than MAGMA. We can find that for inception3a

and inception4a, the performance speedup can be up to 1.40X.

The performance benefits come from two aspects. Tiling en-

gine can choose proper tile strategy for each GEMM, and

reduce thread under-utilization. Using inception3a as an ex-

ample, the second GEMM is with M = 16, and the thread
blocks responsible for this GEMM have large percentage of

threads idle in MAGMA work. By comparison, in our frame-

work, we can choose small tile strategy with 128-thread ver-

sion for this GEMM. Besides, the batching engine can batch

two tiles along K-dimension to a thread block to improve

instruction-level parallelism. For the other layers, we can

find that their performance speedup is about 1.25X, which

is relatively lower than the first two layers. The K value for
these GEMMs are large enough, so the performance benefit

only comes from tiling engine. In fact, the methodology of

batched GEMM is general. The other algorithm to compute

convolution is implicit GEMM, which can also be batched

using our proposed framework.

Figure 11. Sensitivity on different GPU architectures.

7.4 Sensitivity for GPU Architecture

To demonstrate the scalability on GPU architecture, we eval-

uate the proposed framework on Maxwell, Pascal and Volta

architectures. We use three kinds of Pascal architectures:

Tesla P100, GTX 1080Ti, NVIDIA Titan Xp and two kinds of

Maxwell architecture: Tesla M60 and GTX Titan X. We prod-

uct a evaluation for 100 randomly generated batched-GEMM

cases on each of the above five architectures shown in Fig-

ure 11. On average, compared with MAGMA, our framework

on these architectures can achieve 1.54X, 1.38X, 1.52X, 1.46X,

and 1.43X, respectively. We can find that our framework can

be well portal to other architectures and achieve a consistent

performance speedup.

8 Related Work

GEMM is an important operator for many applications in a

broad range of domains. Many research works focus on its

optimization from algorithm level [10, 16, 26] and architec-

ture level [11, 31, 33]. These optimization techniques have

been integrated into well optimized libraries [20–22].

Full-stack Optimization. Matrix C is first divided into

multiple tiles, and each thread block produces the partial

result of each tile [10, 16, 26]. Many works focus on low level

GPU micro-architecture optimization [11, 31, 33]. They hack

into compiling stages and built assembly tools for Fermi and

Kepler GPUs. Based on the assembly tools, they can estimate

upper-bound peak performance of GEMM and perform fine-

grained optimizations. Source register combinations may

cause register bank conflicts, which will cause degrade in

throughput. Their work proposed a register allocation tech-

nique that eliminated register bank conflict. Several control

codes are included in the disassembly codes and carefully

tuning the control code can result in improvement of in-

struction throughput. Non-FFMA instructions are inserted in

proper positions to avoid losing performance and ensuring

correctness. Finally, different load instructions from global

or shared memory also influence the GEMM performance.

Software Projects. To fully exploit the research efforts from

above algorithm and micro-architecture optimizations, many

software projects are launched to pack these optimizations to-

gether in order to reduce programming difficulty [4]. Matrix

Algebra onGPU andMulti-core Architectures (MAGMA) [20]

is a dense linear library for current Multi-core GPU sys-

tems. The MAGMA research is based on the idea that, to

address the complex challenges of the emerging hybrid envi-

ronments, optimal software solutions will themselves have

to hybridize, combining the strengths of different algorithms

within a single framework. Building on this idea, they aim to

design linear algebra algorithms and frameworks for hybrid

many-core and GPU systems that can enable applications to

fully exploit the power that each of the hybrid components

offers. NVIDIA cuBLAS library [21] is a fast GPU-accelerated

implementation of standard basic linear algebra subroutines.

239

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Xiuhong Li et. al.

Programmers can use cuBLAS to achieve satisfying per-

formance with little effort. However, cuBLAS is not open

source. CUDA Templates for Linear Algebra Subroutines

(CUTLASS) [22] is a collection of high-performance GEMM

templates written in pure CUDA C++. Though CUTLASS is

written in CUDA C++ without assembly level optimization,

it can still achieve around 90% of performance relative to

cuBLAS. To use the CUTLASS template, programmer have to

manually define the matrix blocking policy. CUTLASS also

implemented FP16 GEMM with Tensor Core.

9 Conclusion

Matrix multiplication (GEMM) is widely applied in scientific

computing domains, such as image processing, deep learning,

and scientific computing. However, in real-world applica-

tions, the matrix size is always not large enough to drive the

GPU hardware. To this end, batch execution of many small

GEMMs is proposed to process many small independent

GEMMs together. In this paper, we propose a coordinated

tiling and batching framework for batched GEMMs. We de-

sign a series of tiling strategies dedicated for batched GEMM

scenario and present a tiling strategy selection algorithm to

determine tiling strategy for each GEMM. We identify that

for the GEMMwith small K , we can assign multiple tiles to a
thread block. We design a batching algorithm to assign tiles

to thread blocks with consideration of the balance between

TLP and ILP. We design a general and flexible programming

style for batched GEMM, which can describe any batching

scheme. Finally, evaluation results show that our batching

algorithm can achieve about 1.40X performance speedup

over the state-of-the-art MAGMA [20] on average.

10 Acknowledgement

This work was supported by the National Natural Science

Foundation China (No. 61672048 and No. 61520106004).

References
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Don-

garra. 2016. Performance, Design, and Autotuning of Batched GEMM

for GPUs. In High Performance Computing. 21–38.

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Don-

garra. 2017. Novel HPC Techniques to Batch Execution of Many

Variable Size BLAS Computations on GPUs. In Proceedings of the In-

ternational Conference on Supercomputing. 5:1–5:10.

[3] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:

Efficient Primitives for Deep Learning. ArXiv e-prints (2014).

[4] Andrzej Chrzeszczyk. 2017. Matrix computations on the GPU. CUBLAS,

CUSOLVER and MAGMA by example. Version 2017.

[5] Scott Gray. 2017. A full walk through of the SGEMM implementation.

https://github.com/NervanaSystems/maxas/wiki/SGEMM. (2017).

[6] Kshitij Gupta, Jeff A Stuart, and John D Owens. 2012. A study of

persistent threads style GPU programming for GPGPU workloads.

In Innovative Parallel Computing-Foundations & Applications of GPU,

Manycore, and Heterogeneous Systems (INPAR 2012). 1–14.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 770–778.

[8] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,

William J. Dally, and Kurt Keutzer. [n. d.]. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5MB model size. arXiv

e-prints ([n. d.]), arXiv:1602.07360.

[9] Changhao Jiang and M. Snir. 2005. Automatic tuning matrix multipli-

cation performance on graphics hardware. In 14th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT’05).

185–194.

[10] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. 2012. Autotuning

GEMM Kernels for the Fermi GPU. IEEE Transactions on Parallel and

Distributed Systems 23, 11 (2012), 2045–2057.

[11] Junjie Lai and Andre Seznec. 2013. Performance Upper Bound Analysis

and Optimization of SGEMMon Fermi and Kepler GPUs. In Proceedings

of the 2013 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 1–10.

[12] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and

Henk Corporaal. 2017. Locality-Aware CTA Clustering for Modern

GPUs. In Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating

Systems. 297–311.

[13] Ang Li, Gert-Jan van den Braak, Henk Corporaal, and Akash Kumar.

2015. Fine-Grained Synchronizations and Dataflow Programming on

GPUs. In Proceedings of the 29th ACM on International Conference on

Supercomputing. 109–118.

[14] Xiuhong Li and Yun Liang. 2016. Efficient Kernel Management on

GPUs. In Proceedings of the 2016 Conference on Design, Automation &

Test in Europe. 85–90.

[15] Xiuhong Li, Yun Liang, Wentai Zhang, Taide Liu, Haochen Li, Guojie

Luo, and Ming Jiang. 2018. cuMBIR: An Efficient Framework for Low-

dose X-ray CT Image Reconstruction on GPUs. In Proceedings of the

2018 International Conference on Supercomputing. 184–194.

[16] Yinan Li, Jack Dongarra, and Stanimire Tomov. 2009. A Note on

Auto-tuning GEMM for GPUs. In Proceedings of the 9th International

Conference on Computational Science: Part I. 884–892.

[17] Yun Liang, Huynh Phung Huynh, Kyle Rupnow, Rick Siow Mong Goh,

and Deming Chen. 2015. Efficient GPU Spatial-Temporal Multitasking.

IEEE Transactions on Parallel and Distributed Systems 26, 3 (2015), 748–

760.

[18] Yun Liang and Xiuhong Li. 2017. Efficient Kernel Management on

GPUs. ACM Transaction on Embedded Computing System 16, 4 (2017),

115:1–115:24.

[19] Yun Liang, Xiuhong Li, and Xiaolong Xie. 2017. Exploring Cache

Bypassing and Partitioning for Multi-tasking on GPUs. In Proceedings

of the 36th International Conference on Computer-Aided Design. 9–16.

[20] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An Improved

Magma Gemm For Fermi Graphics Processing Units. International

Journal of High Performance Computing Applications 24, 4 (2010), 511–

515.

[21] NVIDIA. 2018. CUDA Documentation. http://docs.nvidia.com/cuda/

cublas/index.html. (2018).

[22] NVIDIA. 2018. CUTLASS: Fast Linear Algebra in CUDA C++. https:

//devblogs.nvidia.com/cutlass-linear-algebra-cuda/. (2018).

[23] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod

Grover, Louis-Noel Pouchet, Atanas Rountev, and P. Sadayappan. 2016.

Resource Conscious Reuse-Driven Tiling for GPUs. In Proceedings of

the 2016 International Conference on Parallel Architectures and Compi-

lation. 99–111.

[24] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam,

Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. 2018. Regis-

ter Optimizations for Stencils on GPUs. In Proceedings of the 23rd ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming.

168–182.

240

Batched GEMM on GPUs PPoPP ’19, February 16–20, 2019, Washington, DC, USA

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.

Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and

Andrew Rabinovich. 2014. Going Deeper with Convolutions. CoRR

abs/1409.4842 (2014).

[26] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang

Bao, and Ninghui Sun. 2011. Fast Implementation of DGEMM on

Fermi GPU. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis. 35:1–35:11.

[27] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun,

Tao Wang, and Dongrui Fan. 2015. Enabling Coordinated Register

Allocation and Thread-level Parallelism Optimization for GPUs. In

Proceedings of the 48th International Symposium on Microarchitecture.

395–406.

[28] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao

Wang, and Dongrui Fan. 2018. CRAT: Enabling Coordinated Register

Allocation and Thread-Level Parallelism Optimization for GPUs. IEEE

Trans. Comput. 67, 6 (2018), 890–897.

[29] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An

Efficient Compiler Framework for Cache Bypassing on GPUs. In Pro-

ceedings of the International Conference on Computer-Aided Design.

516–523.

[30] Xiaolong Xie, Yun Liang, YuWang, Guangyu Sun, and TaoWang. 2015.

Coordinated static and dynamic cache bypassing for GPUs. In 21st IEEE

International Symposium on High Performance Computer Architecture.

76–88.

[31] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,

and Mingyu Chen. 2017. Understanding the GPU Microarchitecture to

Achieve Bare-Metal Performance Tuning. In Proceedings of the 22Nd

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming. 31–43.

[32] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin

Yi, and Wenguang Chen. 2017. Versapipe: A Versatile Programming

Framework for Pipelined Computing on GPU. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture.

587–599.

[33] Keren Zhou, Guangming Tan, Xiuxia Zhang, Chaowei Wang, and

Ninghui Sun. 2017. A Performance Analysis Framework for Exploiting

GPU Microarchitectural Capability. In Proceedings of the International

Conference on Supercomputing. 15:1–15:10.

A Artifact Appendix

A.1 Abstract

This section is mainly the guideline to perform artifact eval-

uation for this paper. We first describe the directory tree of

our code, which contains the code of both related work and

our work. Then, we present the check-list for the evalua-

tion. Finally, experiment workflow shows how to access the

source code and how to use the scripts to perform detailed

validation.

A.2 Description

The following is the directory tree of the code, which con-

tains eight sub-directories as follows:

• data. In this sub-directory, we provide a gen_data bi-

nary to generate the data-set used in the following

evaluation.

• include. This sub-directory contains a header file for

CUDA run-time, cuBLAS and cuDNN error check.

• default. This sub-directory contains the source code

for default execution.

• cke. This sub-directory contains the source code for

concurrent kernel execution using stream interface.

• magma. This sub-directory contains the source code

of the batched GEMM implementation proposed in

MAGMA paper [1].

• tiling. This sub-directory contains the source code of

the tiling engine proposed in our paper.

• batching. This sub-directory contains the source code

of the batched GEMM implementation incorporating

both of the tiling engine and batching engine in our

paper.

• google-net_cudnn. This sub-directory contains the

source code of a Google-Net inference framework built

by cuDNN APIs and our batched GEMM techniques.

A.3 Artifact check-list

• Algorithm: Multiple variations of batched-GEMM on

GPUs.

• Program: CUDA and C/C++ code.

• Compilation: nvcc 9.0 with -O3 flag.

• Binary: CUDA executable.

• Data set: random matrix size and batch size.

• Run-time environment: Ubuntu 16.04withCUDASDK

9.0 installed.

• Hardware: Any GPUs with compute capability >=5.0

(Recommended GPU: NVIDIA V100 GPU.)

• Howmuchdisk space required (approximately)?: <=10Mb

• How much time is needed to prepare workflow (ap-

proximately)?: <=30 minutes

• How much time is needed to complete experiments

(approximately)?: <=30 minutes

• Publicly available?: Yes.

A.4 Experiment workflow

For the convenience of the artifact evaluation, we only provide a

few simple scripts in each sub-directory. Below are the steps to

download our code, run the experiments, and observe the results.

A.4.1 Download the code.

We provide two methods to obtain the code.

$git clone ppopp_ar@scc.eescer.com:/pub/tiling_batching_gemm.git

The password is 123456. Note that there is no dot in the password.

A.4.2 Build and Run the experiments.

Comparison. There are five variants: default, cke, and magma in

related works, as well as tiling and batching in our paper. In these

five sub-directories, they all contain a run.sh script and you can

run it to obtain the results.

Google-net Real-world case study. Weprovide two different base-

line implementations. We can compare the baseline version with

convolution based on batched-GEMM proposed in this paper. They

can be switched by modifying the variableUSE_MULTI_STREAM
in Makefile.

241

