
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019 71

A Practical Bluetooth Traffic Sniffing System:
Design, Implementation, and Countermeasure

Wahhab Albazrqaoe , Student Member, IEEE, Jun Huang, Member, IEEE, and Guoliang Xing, Member, IEEE

Abstract— With the prevalence of personal Bluetooth devices,
potential breach of user privacy has been an increasing concern.
To date, sniffing Bluetooth traffic has been widely considered
an extremely intricate task due to Bluetooth’s indiscoverable
mode, vendor-dependent adaptive hopping behavior, and the
interference in the open 2.4 GHz band. In this paper, we present
BlueEar–a practical Bluetooth traffic sniffer. BlueEar features
a novel dual-radio architecture where two Bluetooth-compliant
radios coordinate with each other on learning the hopping
sequence of indiscoverable Bluetooth networks, predicting adap-
tive hopping behavior, and mitigating the impacts of RF interfer-
ence. We built a prototype of BlueEar to sniff on Bluetooth classic
traffic. Experiment results show that BlueEar can maintain a
packet capture rate higher than 90% consistently in real-world
environments, where the target Bluetooth network exhibits
diverse hopping behaviors in the presence of dynamic interfer-
ence from coexisting 802.11 devices. In addition, we discuss the
privacy implications of the BlueEar system, and present a prac-
tical countermeasure that effectively reduces the packet capture
rate of the sniffer to 20%. The proposed countermeasure can be
easily implemented on Bluetooth master devices while requiring
no modification to slave devices such as keyboards and headsets.

Index Terms— Bluetooth security, Bluetooth traffic sniffing,
personal area wireless networks.

I. INTRODUCTION

IN RECENT years, Bluetooth has enjoyed an unprecedented
penetration rate in mobile devices. About 4 billion Blue-

tooth devices are expected to ship worldwide in 2018 [2].
In particular, Bluetooth has become the de facto connectivity
interface for wireless accessories and smart devices including
keyboard/mouse, headsets, wearables like fitness trackers and
smart watches, smart appliances, and in-car telematic systems
like Android Auto [3] and CarPlay [4]. Because the communi-
cation of these devices is privacy-sensitive in nature, Bluetooth
employs a two-level stream cipher to encrypt packets at
the link-layer [2]. Unfortunately, recent studies have revealed
many critical flaws of this encryption scheme [5]–[11]. In par-
ticular, it is shown that Bluetooth is subject to several practi-
cal attacks that can circumvent, compromise, or even crack

Manuscript received September 7, 2017; revised April 1, 2018; accepted
October 31, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor G. Zussman. Date of publication December 3, 2018; date of
current version February 14, 2019. This work was supported in part by
the U.S. National Science Foundation under Grant CNS1423221. This work
was presented in part at the 14th ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys 2016), Singapore, Jun. 26-30,
2016. (Corresponding author: Jun Huang.)

W. Albazrqaoe is with the College of Engineering, University of Kufa, Najaf
54001, Iraq (e-mail: albazrqa@gmail.com).

J. Huang is with the School of EECS, Peking University, Beijing 100871,
China (e-mail: jun.huang@pku.edu.cn).

G. Xing is with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong (e-mail: glxing@cuhk.edu.hk).

Digital Object Identifier 10.1109/TNET.2018.2880970

the link-layer encryption, leading to potential user privacy
breach [7].

Despite the well-documented flaws of Bluetooth encryption,
to date, sniffing Bluetooth traffic has been considered an
extremely intricate task due to the following reasons. (i) Blue-
tooth employs frequency hopping spread spectrum, where car-
rier frequency is rapidly switched following a pseudo-random
hopping sequence. The hopping sequence is hidden when
Bluetooth is in indiscoverable mode, making it difficult for
a sniffer to hop following the target; (ii) when coexisting with
other wireless devices on overlapping frequencies, Bluetooth
performs adaptive hopping, where the hopping sequence is
frequently modified to adapt spectrum use. Such an adaptive
hopping behavior is vendor-dependent, and may differ sig-
nificantly across different devices; and (iii) in the crowded
2.4 GHz band, the sniffer may experience intensive interfer-
ence from coexisting wireless devices, especially the prevalent
802.11 based WLANs, resulting in poor sniffing performance.

There exist a few proprietary off-the-shelf Bluetooth
sniffers [12], which are primarily designed for protocol diag-
nosis in controlled wireless settings. In addition, to sniff
the traffic of frequency hopping Bluetooth, they rely on
specialized radios to monitor all Bluetooth subchannels in
parallel, which makes them costly. As an example, off-the-
shelf sniffers manufactured by Frontline Test Equipment [12]–
the leading provider of Bluetooth protocol analyzer–cost $10K
to $25K per unit. Recently, a few low-cost Bluetooth packet
sniffers have been developed based on open-source wireless
platforms [13]–[20]. These systems are exclusively designed
for sniffing Bluetooth traffic in basic hopping mode. In prac-
tice, they suffer prohibitively poor sniffing performance due
to the misprediction of adaptive hopping behavior, as well as
excessive packet corruptions caused by the interference in the
open 2.4 GHz band.

As Bluetooth becomes increasingly popular worldwide,
an in-depth study on its resistance to traffic sniffing becomes
imperative. In this paper, we explore the feasibility and privacy
implications of sniffing Bluetooth traffic in practical envi-
ronments using general, inexpensive wireless platforms. Our
major contribution is two-fold.

The BlueEar System: We present the design, imple-
mentation, and evaluation of BlueEar–the first practical
Bluetooth traffic sniffer that consists only of inexpensive,
Bluetooth-compliant radios. BlueEar features a novel dual-
radio architecture, where two radios–named as scout and
snooper–coordinate with each other on learning the hopping
sequence of indiscoverable Bluetooth, predicting adaptive hop-
ping behavior, and handling complex interference conditions.

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6403-2763

72 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Specifically, the scout hops over all Bluetooth subchannels
to survey interference conditions and monitors the target’s
packet transmissions. By fusing these measurements, BlueEar
uses a probabilistic clock matching algorithm to determine
the basic hopping sequence, and then integrates statistical
models and a lightweight machine learning algorithm to pre-
dict the adaptive hopping behavior, which allows the snooper
to hop following the target. To maintain reliable sniffing
performance in complex interference conditions, the scout
runs a selective jamming algorithm, which manipulates the
hopping of the target to mitigate the impacts of interference.
We have implemented a prototype of BlueEar for sniffing the
traffic of Bluetooth Classic, which offers enhanced data rates
and a more complex hopping protocol than Bluetooth Low
Energy (BLE). Our prototype can be expended to sniff on
BLE traffic. The prototype employs two Ubertooths [13] to
implement the scout and the snooper, and interfaces them
to a controller running on a Linux laptop. We identify crit-
ical issues in Ubertooth firmware that severely degrades its
performance during frequency hopping, and present novel
solutions to address these flaws. Extensive experiments results
show that BlueEar can maintain a packet capture rate higher
than 90% consistently in practical environments, where the
target Bluetooth network exhibits diverse hopping behaviors
in the presence of interference from coexisting 802.11 based
WLANs.

Privacy Implications: We discuss the implication of the
BlueEar system on BLE privacy. Moreover, we evaluate the
performance of BlueEar when eavesdropping on audio traffic,
which is known to be extremely sensitive to packet loss.
We show that the packet capture rate achieved by BlueEar
translates to a high audio quality with a mean opinion
score (MOS) of 3.5, which is translated into F̀air’ and G̀ood’
from the listener’s perspective. Furthermore, we present a
practical countermeasure, that can be easily implemented in
the user-space driver of the Bluetooth master device, while
requiring no modification to existing slave devices like key-
boards and headsets. The countermeasure effectively reduces
the packet capture rate of the sniffer to 20%, and degrades the
MOS of eavesdropped audio to 1.5, which is between ‘Bad’
and ‘Poor’.

The rest of the paper is organized as follows. Section II
reviews related work. In section III, we introduce the back-
ground on Bluetooth system in general. We present system
overview and architecture in section IV. In section V, we dis-
cuss BlueEar system design in detail. Evaluation of BlueEar
system performance is presented in section VII. We discuss the
impacts of BlueEar on privacy breach for Bluetooth system,
including BLE, in section VIII. Section IX concludes the
paper.

II. RELATED WORK

Bluetooth Classic employs E0–a two-level stream cipher
based on 128-bit link key–to encrypt packet payloads. The link
key is established through pairing, where Bluetooth devices
authenticate each other using a secret PIN. In the literature,
studies have revealed many critical flaws of this encryption
scheme [5]–[11].

First, recent studies on E0 cryptanalysis have shown that
the 128-bit link key of E0 is considerably weaker than
what is originally intended [5], [6], [9]. The encryption key
can be cracked with 227 online operations and 221.1 offline
operations instead of 2128. Specifically, given the headers of
222.7 Bluetooth packets, the attack takes a few seconds to
restore the target encryption key. Such attack is implemented
on a single core PC and requires 4 MB RAM of memory.
Furthermore, the effective security of the link key will further
degrade when a packet sniffer is employed by the attacker.

Recent studies have demonstrated the feasibility of cir-
cumventing Bluetooth encryption using expensive, proprietary
packet sniffers. For instance, the traffic pattern of popular
fitness trackers is found to be strongly correlated with the
user’s activity, making it possible to track user gait and
identity. As a result, a passive traffic sniffer can uncover
important private information about the user, even without
decrypting packet payloads [7]. Moreover, due to computation
and power constraints, many Bluetooth peripherals–including
most Bluetooth mice manufactured by major vendors like
Logitech [21]–do not support encryption, which may result
in user privacy breach.

Despite the well-documented flaws of Bluetooth encryp-
tion, sniffing Bluetooth traffic has been widely considered
an extremely intricate task. There exist several proprietary
and open source systems for sniffing Bluetooth traffic. For
example, the firmware of a few Bluetooth chipsets allow
the radio to report packet-level diagnosis by working in
sniffing mode [18]–[20]. However, the sniffing device must
pair with the target, which makes it incapable of passive
sniffing. The GNURadio/USRP [14], [15] platform can be
programmed to decode Bluetooth packets [16]. Due to large
signal processing overhead and frequency switching delay,
they are limited to sniffing one subchannel at a time. There
exist several proprietary Bluetooth packet sniffers designed for
protocol diagnosis in controlled wireless settings [12]. They
rely on specialized radio to monitor all subchannels in parallel,
which makes them extremely costly. For instance, off-the-shelf
sniffers manufactured by Frontline Test Equipment [12] – the
leading provider of Bluetooth protocol analyzer–cost $10K to
$25K per unit.

Recently, several low-cost Bluetooth packet sniffers
[13] [17] have been developed based on Ubertooth [13]–an
open-source Bluetooth development platform. However, exist-
ing Ubertooth-based sniffers are exclusively designed for
sniffing Bluetooth traffic in basic hopping mode. In the
crowded 2.4 GHz band, Bluetooth rarely hops in basic
hopping mode because of the interference from coexist-
ing wireless devices, especially the prevalent 802.11 based
WLANs [22] [23] [24] [25]. As a result, existing low-cost
sniffers suffer prohibitively poor sniffing performance in prac-
tice due to the misprediction of adaptive hopping behav-
ior, as well as excessive packet corruptions caused by
interference.

Compared with existing Ubertooth-based systems, BlueEar
is designed for sniffing Bluetooth traffic in practical
environments where both the sniffer and the target may suffer
from intensive interference from coexisting wireless devices.

ALBAZRQAOE et al.: PRACTICAL BLUETOOTH TRAFFIC SNIFFING SYSTEM 73

To achieve this goal, we address the key challenges posed by
the indiscoverable mode of Bluetooth, the vendor-dependent
adaptive hopping behavior, and the difficulties in maintaining
consistent sniffing performance in the crowded 2.4 GHz band.
In addition, we identify various critical issues in Ubertooth
firmware that significantly degrade its performance during
frequency hopping, and present solutions to address these
flaws. We note that although our prototype is developed based
on Ubertooth, the design of BlueEar is platform-independent
and can be easily ported to other systems.

III. BLUETOOTH BACKGROUND

Piconet: Bluetooth networks employ a master-slave struc-
ture called a piconet. The device that has the least computation
and power constraints is usually selected as the master to
manage communication. Other devices are slaves. Bluetooth
piconets use the MAC address of the master device as the
piconet address. All devices from the same piconet are syn-
chronized to the piconet clock–a clock signal generated by the
master.

The Hopping Protocol: We now introduce the hopping
protocol of Bluetooth Classic, which is more complex than
that of BLE. The hopping protocol of BLE is discussed in
Section VIII. In Bluetooth Classic, the hopping protocol is
defined by a physical channel, which is characterized by
pseudo-random hopping over 79 subchannels from 2.4 to
2.48 GHz. The carrier frequency is switched every 625 μs,
resulting in a maximum hopping rate of 1600 hops/s. Specif-
ically, there are two types of physical channel for data com-
munication, including,

(i) Basic channel. In each hop of the basic channel, the sub-
channel index is calculated by H(A, c), where H(·) denotes
the basic hop selection kernel specified by the Bluetooth
standard [2], A is the piconet address, and c is the piconet
clock. In Bluetooth Classic, the piconet clock is a 27-bit
logic counter that ticks every hop. Because piconet clock
wraps around every 227 ticks, the basic channel repeats itself
every 134,217,728 hops, which take approximately 24 hours.
In other words, the basic channel can be characterized by
a basic hopping sequence and a hopping phase. The basic
hopping sequence, which is determined by the piconet address,
is composed of 227 subchannel indices {i0, ..., i227−1}, where
ic =H(A, c). The hopping phase, which is determined by the
piconet clock, is the index of the current hop.

(ii) Adapted channel. When coexisting with other wire-
less devices on overlapping frequencies, Bluetooth performs
adaptive hopping where the basic channel is frequently mod-
ified to adapt spectrum use. The adaptation is guided by a
subchannel map, which classifies subchannels as good and
bad based on interference conditions. When the subchannel
selected in a hop is bad, a remap function is called to
compute a pseudo-random index i based on piconet address
and clock. The bad subchannel is then replaced by the i-th
good subchannel. Although adaptive hopping is the de facto
scheme used by off-the-shelf Bluetooth devices, the Bluetooth
standard does not specify the implementation of subchannel
classification, resulting in different adaptive hopping behaviors
across devices manufactured by different vendors.

Indiscoverable Mode: When establishing the piconet, Blue-
tooth devices authenticate each other through a pairing
process. To enhance privacy, Bluetooth piconets can be put
in indiscoverable mode to hide key technical parameters from
unpaired devices. These parameters–including piconet address,
piconet clock, and subchannel map–determine hopping behav-
ior. Although recent study has demonstrated the possibility
of extracting piconet address from packet preambles [16],
a Bluetooth packet sniffer cannot hop following the target
unless it acquires all hidden parameters.

IV. BLUEEAR OVERVIEW

A. Objectives and Challenges

We study Bluetooth privacy by exploring the feasibility of
sniffing Bluetooth traffic in practical environments. To this
end, BlueEar is designed as a passive traffic sniffer that
leverages general, inexpensive wireless platform to capture
Bluetooth packets without pairing with the target piconet.
To achieve this goal, we tackle the following challenges.

(i) Secret hopping phase. In indiscoverable mode,
the piconet clock that indicates the hopping phase is hidden
from BlueEar. In adaptive hopping mode, determining the
hopping phase is particularly challenging because the basic
hopping sequence of the target is subject to frequent modifi-
cations.

(ii) Vendor-dependent adaptive hopping. The adaptive hop-
ping of Bluetooth is guided by a subchannel map, which
classifies subchannels as good and bad based on dynamic
interference conditions. However, the Bluetooth standard does
not specify the implementation of subchannel classification,
resulting in vendor-dependent implementation, where Blue-
tooth chipsets manufactured by different vendors may hop over
different subchannels even in the same spectrum context.

(iii) Interference in the crowded 2.4 GHz band. When coex-
isting with other wireless devices, BlueEar may experience
hidden and exposed interference. When an RF signal that inter-
feres with the target is too weak to be measured at BlueEar,
the spectrum contexts observed by BlueEar and the target
may differ, making it difficult to predict adaptive hopping
behavior. When an RF source interferes with the target but
BlueEar, significant degradation of sniffing performance may
occur. While authorized devices can maintain packet reception
performance by coordinating their hopping, designed as a
passive sniffer, BlueEar cannot coordinate with the target,
which may lead to substantial packet corruptions.

B. System Architecture

Instead of using specialized radio to monitor all subchannels
in parallel, BlueEar tackles the above challenges based on
a simple dual-radio architecture that consists of two inex-
pensive, Bluetooth-compliant radios. The two radios–named
as scout and snooper–are interfaced to a controller, which
employs a suite of novel algorithms to coordinate the two
radios, gluing them as a powerful passive traffic sniffer. Fig. 1
illustrates the architecture of BlueEar. Specifically, the working
flow of BlueEar can be divided into the following steps.

74 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 1. The dual-radio architecture of BlueEar. Components in the gray area
comprise a standard-compliant hop selection kernel.

(i) Traffic filtering. When multiple piconets coexist in the
same environment, BlueEar separates their traffic based on the
piconet address of captured packets. Specifically, the preamble
of each Bluetooth packet carries a synchronization word,
which is derived from the piconet address using an encoding
function specified by the standard [2]. BlueEar employs the
brute force algorithm proposed in [16] to extract piconet
address from the synchronization word, and then filters out the
packets whose piconet address mismatches the target piconet
address specified by the BlueEar user.

(ii) Basic channel acquisition. To acquire the basic channel
of the target piconet, the scout listens on an arbitrary sub-
channel to monitor the target’s packet transmissions. After
extracting piconet address from packet preamble, BlueEar
derives the entire basic hopping sequence, and then reverses
the piconet clock using an interference resilient, probabilistic
clock matching algorithm. Specifically, the receiving times
of captured packets are compared with the basic hopping
sequence at different hopping phases, until a correct phase
is found. The acquired piconet address and clock are then fed
to a standard-compliant basic hop selection kernel to compute
the basic channel. (iii) Adapted channel acquisition. To acquire
the adapted channel, BlueEar needs to predict how the target
reacts in dynamic spectrum context. To this end, the scout
hops over all subchannels on the acquired basic channel to
survey interference conditions, and monitors packet transmis-
sions to infer the target’s subchannel utilization. By fusing
these measurements, BlueEar trains a subchannel classifier
at run-time, which accurately derives the target’s subchannel
map despite vendor-dependent adaptive hopping behavior and
the possible disparity between the spectrum contexts of the
scout and the target. The subchannel map is then fed to a
standard-compliant adaptive hop selection kernel for comput-
ing the adapted channel.

(iv) Interference avoidance. The snooper hops following
the target on the adapted channel to sniff traffic. BlueEar
handles complex interference in the crowded 2.4 GHz band
using a selective jamming algorithm. Specifically, a loss detec-
tor is employed to monitor the sniffing performance of all

Fig. 2. An illustrative example of brute force search for clock acquisition.

subchannels. When substantial packet corruptions are detected
on a subchannel i, the scout deliberately generates interference
on i while the target visits i during hopping. Because of
adaptive hopping, the target will be driven away from lossy
subchannels where BlueEar observes poor sniffing perfor-
mance. The objective is to manipulate the target’s hopping
to enforce implicit coordination.

V. DESIGN OF BLUEEAR

In this section, we present the design of key BlueEar
components in detail.

A. Clock Acquisition

In the following, we define some terminology and present
key concepts of clock acquisition.

Definition 1 Basic hopping sequence β = (i0, .., ic, .., iN) is
an n-tuple of integers i ∈ {0, .., 78} that represents subchannel
index, c refers to the piconet clock, i.e. hopping phase, and
N = 227 − 1.

Definition 2 Observed hopping pattern P = {p0, p1, .., pn}
is a set of captured packets.

Next, we first introduce our basic idea for reversing the
piconet clock when the target hops in the basic mode. Second,
we present a probabilistic matching approach to determine the
piconet clock in the presence of interference. Finally, to accel-
erate clock acquisition, we introduce a maximum-likelihood
(ML) based algorithm, which significantly reduces clock
acquisition delay.

1) Brute Force Clock Acquisition: Because the entire hop-
ping sequence β is known after the piconet address is extracted
from packet preamble [16], it is possible to reverse the piconet
clock c through a simple brute force search, which compares
an observed hopping pattern with the entire hopping sequence
at all phases to search for a match. Fig. 2 shows an illustrative
example. At the beginning, the scout listens on a single sub-
channel to monitor the target’s packet transmissions. As shown
in Fig. 2, the scout listens on subchannel 2 where three packets
are captured, which defines P . The receiving times of these

ALBAZRQAOE et al.: PRACTICAL BLUETOOTH TRAFFIC SNIFFING SYSTEM 75

Fig. 3. The effect of subchannel remapping on brute force search based on
the same example shown in Fig. 2.

packets compose a hopping pattern that describes how the
target visits the monitored subchannel. As shown in Fig. 2(c)
and (d), BlueEar then compares the observed hopping pattern
with the entire basic hopping sequence at all phases. A match
is found at clock 34.

Before capturing a sufficient number of packets,
the observed hopping pattern may happen to match the
basic hopping sequence at multiple clock values, resulting
in clock ambiguity. Because the basic hopping sequence is
pseudo-random, probability that an observed hopping pattern
that comprises n packets matches the basic hopping sequence
at an arbitrary clock can be computed as 1

79n . Therefore,
clock ambiguity decreases as the number of captured packets
increases.

2) Probabilistic Clock Matching: In the crowded 2.4 GHz
band, Bluetooth devices rarely hop in the basic mode because
of the impacts of interference from coexisting wireless
devices [22]–[25]. To adapt spectrum use, Bluetooth modifies
the basic channel by remapping bad subchannels subjected to
interference with pseudo-randomly selected good subchannels.
Since the adapted channel may differ from the basic channel
in various phases, the hopping pattern observed by the scout
may mismatch the basic hopping sequence even at the correct
clock. Fig. 3 illustrates the impact of subchannel remapping
using the same example shown in Fig. 2. As illustrated in the
figure, brute force search may fail to find a perfect match due
to the packet transmitted on the remapped subchannel.

To acquire the piconet clock c in the presence of inter-
ference, BlueEar leverages the following key observation.
When comparing an observed hopping pattern P with the
basic hopping sequence β at the correct clock, the ratio of
mismatches should equal the ratio of remapped subchannels.
As required by FCC, Bluetooth Classic must use at least
20 subchannels for frequency hopping [2]. Therefore, the ratio
of remapped subchannels is at most 59

79 . Hence, if the ratio of
mismatches at a clock c is significantly larger than 59

79 , then c
is likely an incorrect clock.

Driven by the above observation, BlueEar employs a prob-
abilistic clock matching (PCM) algorithm for clock acquisi-
tion. Instead of seeking a perfectly matched clock, BlueEar
determines the correct clock by eliminating incorrect clocks
based on the number of mismatches. A clock is identified
as incorrect if the 95% confidence interval of its mismatch
ratio exceeds 59

79 . Specifically, let β be the basic hopping
sequence, P = {p0, .., pn} be a set of observed packets,
and C = {c0, c1, ..cj} and D = {d0, d1, ..dj} be the sets of
clock candidates and the corresponding mismatches numbers,
respectively. When comparing P with β, the PCM algorithm
returns C and D, where di is the number of mismatches at
clock candidate ci. If ci is the correct clock, the ratio of
mismatches μ = di

n , n = |P |, should be close to the ratio
of unused subchannels. Based on the central limit theory,
the distribution of

√
n(di

n − μ) should approach normality
when n is reasonably large. The 95% confidence interval of
μ can be estimated as di

n ± 2 σ√
n

, where σ2 is the variance.

Therefore, clock ci is determined as incorrect if di

n − 2 σ√
n
≥

59
79 . When a new packet is captured, the algorithm updates the
mismatch ratios for remaining clock candidates.

3) Accelerating Clock Acquisition: The PCM algorithm
acquires the correct clock by gradually eliminating incorrect
candidates; this may incur some time delay while waiting for
new packets to be captured. To reduce clock acquisition delay,
BlueEar resorts to estimate the piconet clock. In particular,
given a set of observed packets P , the ML algorithm derives
several subsets P1, .., Pz ⊂ P , and invokes the PCM algorithm
to obtain corresponding sets of clock candidates C1, .., Cz .
From the later sets, the algorithm finds probability distribution
of candidates and identifies a candidate that maximizes the dis-
tribution function. The algorithm proceeds with the following
steps.

Input: P = {p0, .., pn} and C = {c0, .., cj}, and b < n
Step 1: Defines a counter a = 1, and
Step 2: Finds the subset Pa ⊂ P , Pa = {pa, .., pb}
Step 3: Invokes the PCM algorithm with Pa and obtains Ca

Step 4: Subtracts q from all elements in Ca. Intuitively, if c
was the piconet clock at the time of transmitting p0, then c+q
must be the piconet clock at the time of transmitting pa, where
q is the number of clock ticks between p0 and pa.

Step 5: Finds C ← C ∪ Ca

Step 6: Increments a and b, while b < n, goto Step 2
Step 7: Finds probability distribution of candidates in C, and

identifies cwinner that maximizes the distribution function.
BlueEar evaluates optimality of the ML estimator based on

some loss function L, which we define as follows: L(ci) = di,
where ci is an approximation for the piconet clock c, and
di is the number of mismatches at clock ci as defined
earlier. According to the PCM algorithm, a clock candidate
ci, that is aligned with high mismatches di, is most likely
to be eliminated from C as sufficient number of packets
are overheard. Based on this observation, the ML estimator
cwinner is considered if it is aligned with the minimum
mismatches number dm; otherwise, the ML algorithm waits
for new packets to be captured.

76 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 4. Estimation of a piconet clock based on the ML algorithm and loss
function L(ci) = di.

Fig. 4 shows an example, where the ML algorithm success-
fully identifies the piconet clock based on a set of 20 observed
packets. In this figure, it is clear that the winner candidate
aligns with the minimum value of the loss function L.

B. Subchannel Classification

The adaptive hopping of Bluetooth is guided by a subchan-
nel map that classifies subchannels as good and bad based
on dynamic interference conditions. To acquire the adapted
channel, BlueEar employs a subchannel classifier, which infers
how the target classifies subchannels. The subchannel classifier
must meet the following requirements.

(i) Accuracy. When a subchannel is misclassified,
the snooper may hop to a wrong subchannel different from the
one used by the target. Poor subchannel classification accuracy
may result in substantial packet misses.

(ii) Responsiveness. In dynamic spectrum contexts, the sub-
channel classifier must be responsive to the change of inter-
ference conditions.

In the following, we present two complementary subchannel
classification algorithms, and discuss their advantages and
limitations in achieving the above goals. We then discuss
how BlueEar integrates the two algorithms for subchannel
classification.

1) Packet-Based Classifier: Design: As Bluetooth only
transmits on good subchannels, it is possible to infer the status
of a subchannel based on its packet rate, which indicates how
frequently the target transmits on a subchannel. To measure
packet rates, the scout hops over all 79 subchannels on
the acquired basic channel to monitor the target’s packet
transmissions. For each subchannel i, BlueEar computes its
packet rate as ri = qi

vi
, where qi is the number of packets

received on i, and vi is the number of times the scout visits i.
When a subchannel is classified as bad by the target, the packet
rate measured by the scout will be substantially lower than that
of good subchannels.

A key challenge to achieve accurate packet-based classifi-
cation is that packet rates differ significantly across different
applications (e.g., data transfer, audio, and keystroking, etc.),
and may vary with time depending on the traffic dynamics
in the target piconet. To address this challenge, we leverage
the fact that, as required by FCC, Bluetooth Classic uses at
least 20 subchannels for frequency hopping [2]. As a result,
the 20 subchannels that have the highest packet rates can
be used as a reference to estimate the current packet rate
of the target piconet. Driven by this observation, the packet-

based classifier identifies bad subchannels using the following
algorithm.

• Step 1: Initially, the 20 subchannels that have the high-
est packet rates are classified as good. Let Rg =
{ri1 , ..., ri20} be the set of their packet rates.

• Step 2: In remaining unclassified subchannels, the clas-
sifier searches for the one with the highest packet rate.
Denote this subchannel as i, and its packet rate as ri.

• Step 3: The packet-based classifier determines whether
subchannel i is bad by checking if ri is an outlier of Rg .
If ri is an outlier, i and all remaining subchannels of
even lower packet rates are classified as bad. Otherwise,
i is classified as good and its packet rate ri is inserted to
Rg . The algorithm then goes back to step 2 until a bad
subchannel is identified.

We determine if ri = qi

ni
is an outlier of Rg as follows. Let

rg be the average packet rate of Rg . Assuming subchannel i is
good, probability that the target transmits less than qi packets
after vi visits can be computed as,

ρi =
qi∑

n=0

(
vi

n

)
(1− rg)vi−nrn

g (1)

We identify outliers under a given confidence level, denoted
as θ. Subchannel i is classified as bad if ρi ≤ 1− θ.

Fig. 5 gives two examples of packet-based subchannel
classification for data and audio traffic in different spectrum
contexts. The upper figure shows the packet rates measured on
79 subchannels. Low packet rates are observed on bad sub-
channels subjected to interference. The bottom figure shows
the probability scores ρi for each subchannel i calculated using
Eq. (1). As shown in the figure, the packet-based classifier reli-
ably identifies bad subchannels despite the significant variation
of packet rates across different applications.

Discussion: By classifying subchannels based on packet
rates, packet-based classifier offers two advantages: (i) it
works efficiently across different Bluetooth devices despite
vendor-dependent subchannel classification methods, (ii) the
classification is not affected by the disparity between the
spectrum contexts of the target and BlueEar. However,
packet-based classifier is less responsive in dynamic spectrum
context because a subchannel cannot be classified as good
or bad before overhearing a sufficient number of packets.
As a result, packet-based classifier may perform poorly when
subchannel status changes fast with time-varying interference.

2) Spectrum Sensing-Based Classifier: Design: Since Blue-
tooth piconet classifies subchannel based on interference
conditions, subchannel i is likely bad if strong interference
is measured on i. Driven by this observation, spectrum
sensing-based classifier infers subchannel status based on
interference measurements. When hopping on the basic
channel, the scout measures interference power on each
subchannel. The interference condition on a given subchannel
is characterized using the probability density of interference
power. Fig. 6 illustrates two examples measured by the
scout on clean and dirty subchannels. On both subchannels,
the environment noise floor is found at −95 dBm. An inter-
ference source whose signal power ranges from −45 dBm

ALBAZRQAOE et al.: PRACTICAL BLUETOOTH TRAFFIC SNIFFING SYSTEM 77

Fig. 5. Running examples of packet-based subchannel classification for data and voice traffic under in different spectrum contexts. The packet-based classifier
calculates a probability score based on Eq. (1) to determine subchannel status. A subchannel is classified as bad if the probability score is below the pre-defined
threshold. (a) Data. (b) Audio.

Fig. 6. Probability densities of interference power measured on clean and
dirty subchannels. (a) Clean subchannel. (b) Dirty subchannel.

and −40 dBm can be observed in Fig. 6(b). The interference
source is active in about 15% of time.

Based on interference measurement, the spectrum sensing
based classifier employs an SVM to determine subchannel
status. The SVM takes as input a feature vector obtained
by discretizing the probability density of interference power
based on Xi = {x−100,i, x−99,i..., x−20,i}, where xs,i is
the probability of observing an interfering signal power of
s dBm on subchannel i. Xi characterizes interference condition
between -100 dBm and -20 dBm, which is sufficient to capture
the activities of all interfering sources in practice.

Discussion: Although spectrum sensing-based classifier is
responsive to time-varying interference conditions, achieving
satisfactory accuracy is difficult because (i) depending on the
location of interference source, the spectrum measured by the
scout may differ from the one observed by the target; (ii)
the subchannel classification method adopted by the target
is vendor-dependent and may differ across different devices.
To address these limitations, the spectrum sensing-based clas-
sifier must be trained at run-time.

3) Hybrid Classifier: For accurate and responsive classifi-
cation of subchannel status, BlueEar employs a hybrid classi-
fier that combines the complementary packet- and spectrum
sensing-based classifiers. At run-time, the hybrid classifier
uses packet-based classification results to train a spectrum
sensing-based classifier, which learns the vendor-dependent
subchannel classification method of the target. After train-
ing, BlueEar fuses the outputs of packet- and spectrum
sensing-based classifiers to infer subchannel status.

Fig. 7. Time-domain illustration of run-time training of the spectrum
sensing-based classifier.

To train the spectrum sensing-based classifier, BlueEar
labels interference conditions measured by the scout using the
outputs of packet-based classification. Note that packet-based
classifier infers subchannel status based on packet rates derived
from the history of overheard packets, therefore its result
may lag behind the true subchannel status. To compensate
this delay, BlueEar composes training cases by labeling Xf

using packet-based classification results obtained at a later
time point. Fig. 7 illustrates this training procedure in time-
domain.

For subchannel classification, the hybrid classifier fuses
the outputs of packet- and spectrum sensing-based classifier
based on the responsiveness and confidence of results. The
soft-output of SVM is utilized to characterize the confidence
of classification. The soft-output of SVM is a log-likelihood
ratio computed as λi = log ρi

1−ρi
, where ρi is the probability

that i is good, and |λi| indicates confidence. Because spec-
trum sensing-based classifier is more responsive to dynamic
spectrum context, the hybrid classifier adopts the output of
SVM as the final classification result if its confidence |λi| is
higher than a predefined threshold. Otherwise, the output of
packet-based classifier is adopted.

C. Selective Jamming

In the crowded 2.4 GHz frequency band, BlueEar is sub-
jected to the interference of coexisting wireless devices, espe-
cially the prevalent 802.11 based WLANs. Unlike authorized

78 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 8. BlueEar prototype that consists of two Ubertooths [13].

Bluetooth devices that can handle such interference by coor-
dinating their hopping, designed as a passive packet sniffer,
BlueEar cannot coordinate with the target, which may result
in poor sniffing performance. BlueEar mitigates the impacts of
such interference using a selective jamming algorithm. In the
following, we present the algorithm design in detail, and then
discuss the impact of jamming on 802.11 devices.

When the interference causes substantial packet corruptions
on a subchannel i, the scout deliberately generates inter-
ference on i while the target visits i. Because of adaptive
hopping, the target will be driven away from subchannels
i, resulting in implicit coordination. To this end, BlueEar
employs a loss detector to identify subchannels subjected to
hidden interference. Whenever the scout overhears a packet,
it checks packet integrity using CRC, and then sends the result
to the loss detector. For each subchannel, the loss detector
employs a moving window to compute the ratio of corrupted
packets. The scout is commanded to jam a subchannel if the
packet corruption ratio is higher than a predefined threshold.
To effectively drive the target, a class one Bluetooth radio
capable of high power transmission is employed to implement
the scout.

Discussion: Despite deliberately generating interference
in the 2.4 GHz band, the impacts of selective jamming
on 802.11 devices is very limited because of two rea-
sons. First, there are considerably low chances for collisions
between 802.11-based frames and selective jamming frames.
As explained earlier, selective jamming is equivalent to Blue-
tooth class 1 transmission, and hence, probability of collision
with 802.11 WLAN is equivalent to that of Bluetooth. A pre-
vious study [26] highlights that in worst case scenario, where
the three 802.11 non-overlapped channels are consistently
occupied, the probability of collision with Bluetooth is less
than 0.2. However, this probability considerably reduces if we
consider the following factors: (i) the scenario of occupying
the three 802.11 non-overlapped channels is rare;

(ii) the study [26] considers a low data rate (5.5Mbps)
for 802.11 link. With adoption of OFDM higher data rates,
like 48 Mbps, frame-in-air-time becomes shorter than that
of 5.5Mbps rate. As a result, abundant white space between
802.11 transmissions is expected. A recent study [25] con-
firms this and shows that 802.11 traffic is highly bursty and
frames are clustered together with short intervals of time
(typically less than 1ms), while periods between clusters are

significantly longer; (iii) life time of a jamming session is
2 sec in average, where our experiments show that Bluetooth
reacts to interference within 4 sec at most; and finally (iv)
BlueEar only jams in the presence of hidden interference,
which is a special scenario for BlueEar. Second, assuming
the case of collision with 802.11-based frame, a previous
study [27] shows that 802.11 WLAN is robust against narrow
band, short-lived interference (selective jam occupies 1MHz).
Accordingly, we conclude that selective jamming has very
limited effect on 802.11-based WLAN.

VI. IMPLEMENTATION

In this section, we present the implementation of BlueEar in
detail. As shown in Fig. 8, we employ two Ubertooths [13] to
implement the scout and the snooper, and then interface them
to a controller running on a Linux laptop. Computation inten-
sive tasks like clock acquisition and subchannel classification
are implemented on the laptop. Time-sensitive components
like basic and adaptive hop selection are implemented by
extending the firmware of Ubertooth. In addition, we identify
critical issues in Ubertooth firmware that severely degrade
its performance during frequency hopping, and present novel
solutions to address these flaws. We note that although our
current prototype is built based on Ubertooth, the design of
BlueEar is platform-independent and can be easily ported to
other systems.

A. Ubertooth-End Implementation

Ubertooth is an open source 2.4 GHz wireless development
board that costs around $80 per unit [13]. Each Ubertooth is
equipped with an LPC17xx microcontroller, and a low-power
Bluetooth-compliant CC2400 transceiver connected to a 4-inch
2.2 dBi antenna. Ubertooth is capable of transmitting at
22 dBm, which assures the effectiveness of selective jamming.

The original firmware of Ubertooth is implemented
in 823 lines of C code, which implements DMA management,
basic hop selection, and carrier sense, etc. Data in DMA
buffer is framed into USB packets and forwarded to the host.
However, the original firmware lacks support for adaptive
hop selection and run-time clock synchronization. In addition,
we find that the firmware is poorly optimized for real-time fre-
quency hopping. In particular, because of resource contention
among multiple tasks, subchannel switching may be improp-
erly delayed (e.g., by USB packet streaming, which typically
takes around 50μs according to our measurements). Such
delay will break the hop synchronization between BlueEar and
the target.

We extend the firmware of Ubertooth using 400 lines of C
code, which implement the following functions.
(i) Run-time clock synchronization. To hop following the basic
and the adapted channel of the target, the scout and the snooper
must synchronize their native clocks with the target’s piconet
clock, i.e. their clocks must have the same value and tick at
the same time. Run-time clock synchronization is imperative
because the clocks of the scout, the snooper, and the target
may have clock skews [28], which make them run at different
rates, accumulating a drift that breaks hop synchronization.

ALBAZRQAOE et al.: PRACTICAL BLUETOOTH TRAFFIC SNIFFING SYSTEM 79

The extended firmware accomplishes clock synchronization
as follows. After clock acquisition, the firmware receives a
piconet clock value from the clock acquisition component. The
clock value is used as the initial value of a native clock, which
is obtained by programming a 10MHz timer provided by
LPC17xx into a 27-bit counter that ticks every hop. To assure
that the native clock and the piconet clock tick at the same
time, the extended firmware leverages the fact that Bluetooth
packets are always transmitted immediately after clock ticks.
Therefore, the receiving times of overheard packets can be
utilized as a clock reference to correct clock drift. To avoid
packet miss caused by remaining clock drift, the native clocks
of the scout and the snooper are programmed to tick 1 μs
earlier than the target.

(ii) Adaptive hop selection. The firmware of the snooper
implements a standard-compliant adaptive hop selection
kernel. The kernel takes three inputs, including the inferred
subchannel map, the piconet address obtained from the con-
troller, and the value of the native clock. The inferred
subchannel map is updated every second.

(iii) Task scheduler. To assure real-time hopping perfor-
mance, the extended firmware schedules tasks based on their
time sensitivities. Hop selection and subchannel switching are
given the highest priority to assure the right hop synchro-
nization. USB packet streaming and carrier sense are given
the second and lowest priority, respectively. Tasks are executed
in the interval between subchannel switching in the order of
their priorities.

B. Controller Implementation

The controller implements compute intensive tasks,
including packet decoding, clock acquisition, subchannel clas-
sification, and jamming subchannel selection. In addition,
it interacts with the scout and the snooper via high-speed USB.
These tasks are implemented as multiple processes, which
share a 3 KB of memory for coordination and parameter
exchange. For packet-based subchannel classification, the con-
troller implements the algorithm described in Section V-B1
in 53 lines of C code. A confidence level of 99% is used
to assure accurate identification of bad subchannels. The
spectrum sensing-based classifier is implemented based on
SVMlight , which is an open-source computation-efficient SVM
library [29]. The spectrum sensing-based classifier takes about
51.2 KB of memory at run-time. To compensate the delay
of packet-based classification when training the SVM (as
explained in Section V-B2 and Fig. 7), the controller uses
packet-based classification results obtained in t + 4s to label
the signal features measured at t. This choice is motivated by
our empirical measurements, which show that most Bluetooth
devices update subchannel map every 4s. The hybrid classifier
chooses the result of SVM as output if the confidence of SVM
is higher than 90%. Otherwise the output of packet-based
classifier is adopted. The controller is responsible for decoding
the raw bit stream received from Ubertooth. Packet integrity
is examined by checking the received CRC. A subchan-
nel is jammed if the ratio of corrupted packets is higher
than 10%.

VII. BLUEEAR PERFORMANCE

In this section, we present a thorough evaluation of BlueEar
performance. In the following, we first introduce our exper-
imental methodology, and then discuss experiment results in
detail.

A. Experimental Methodology

We study BlueEar performance when sniffing data transfer
and audio streaming, which are representative Bluetooth traf-
fics that have distinct packet rates. Data traffic is generated
by transferring data files between two laptops equipped with
Broadcom dongles. Audio traffic is generated by playing an
audio file on a laptop equipped with CSR dongle, and a
Samsung Bluetooth headset is set as the audio sink. We con-
duct experiments in an office building under the interference
of a large-scale 802.11 based WLAN, as well as in various
controlled settings to benchmark BlueEar performance under
specific interference patterns.

We evaluate the synchronization delay, the subchannel clas-
sification accuracy, and the packet capture rate of BlueEar.
The synchronization delay is measured as the time needed to
determine the correct piconet clock. To measure subchannel
classification accuracy and packet capture rate, we log the
groundtruth subchannel map and packet rates at the piconet
master using a script written based on hcitool. The host of
BlueEar is connected with the piconet master via an Ethernet
link. The instantaneous readings of groundtruth subchannel
map and packet rates are transferred to the BlueEar host
using UDP. We compare BlueEar with a set of baselines.
First, we compare the hybrid subchannel classifier proposed in
Section V-B3 with pure packet-, and spectrum sensing-based
classifiers (abbreviated as P̀kt’ and S̀S’ in figures). The SVM
of pure spectrum sensing-based classifier is trained offline in
a controlled setting consisting of an 802.11 access point (AP)
and a Broadcom piconet. During training, we tune the power
and temporal pattern of 802.11 transmissions to introduce
different interference conditions, which enables extensive pro-
filing of the adaptive hopping behavior of the Broadcom
device. We then use the trained classifier to predict the sub-
channel maps in data and audio tests, where the piconets are
formed using different Bluetooth devices. Second, to evaluate
the gain of selective jamming, we compare BlueEar with
a baseline where the selective jamming is disabled. Third,
we compare the packet capture rate of BlueEar with that of
an existing Ubertooth-based sniffer [13], which operates in the
basic hopping mode, and is oblivious to the adaptive hopping
behavior and the impacts of interference.

B. Synchronization Delay

We first evaluate the delay incurred when synchronizing
BlueEar with the target piconet. The dominant component of
this delay is introduced by clock acquisition, during which the
scout listens on a single subchannel until it captures enough
packets to reverse the piconet clock. We benchmark clock
acquisition delay in different spectrum contexts where the
target exhibits diverse hopping behaviors. Our experiments are

80 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 9. Clock acquisition delay when sniffing data and audio traffics in different spectrum contexts (characterized by the percentage of bad subchannels at
the target piconet). (a) No bad subchannels. (b) 25% bad subchannels. (c) 50% bad subchannels.

Fig. 10. Clock acquisition delay based on the ML algorithm, which is evaluated in different spectrum contexts (characterized by the percentage of bad
subchannels at the target piconet). (a) No bad subchannels. (b) 25% bad subchannels. (c) 50% bad subchannels. (d) 75% bad subchannels.

conducted in a controlled setting where three 802.11 access
points (APs) are deployed around the target. Each AP occupies
one of the three non-overlapping 20 MHz channels. When all
APs are active, they create a crowded spectrum where about
75% subchannels of the target piconet are bad.

Fig. 9 shows the probability of successfully determining the
piconet clock, based on the PCM algorithm, as the listening
time of the scout increases. We observe that clock acquisition
delay when sniffing audio traffic is higher than that when
sniffing data traffic. This is mainly because of the lower packet
rate of audio traffic. Interestingly, the delay substantially
reduces when the spectrum becomes more crowded. This is
because, when more subchannels are occupied by 802.11 APs,
the target piconet has to use fewer subchannels for packet
transmissions, resulting in an increased packet rate on the
subchannel monitored by the scout. Specifically, when 75% of
subchannels are occupied by 802.11 APs, the clock acquisition
delay is less than 10s in both data and audio tests. The
result implies that Bluetooth traffic sniffers can substantially
reduce its synchronization delay using deliberately planned
interference.

Now we evaluate the ML algorithm performance. We con-
sider clock acquisition delay as an evaluation metric. We com-
pare the ML algorithm performance with that of the PCM
algorithm when acts alone. Fig. 10 shows the probability
of successfully estimating the piconet clock as the listening
time increases. To compare, we observe that the ML algo-
rithm outperforms the PCM algorithm, as in Fig. 9. The ML
algorithm significantly reduces clock acquisition delay to less
than 4s. Similar to the PCM algorithm, we observe that clock
acquisition delay when sniffing on audio traffic is higher than
that when sniffing on data traffic. In contrast, the ML algorithm
requires more time to estimate the piconet clock when more
subchannels are occupied by 802.11 traffic, which in turn
maximizes number of remapped packets. Specifically, when
a set of observed packets P starts with a remapped packet,

there is a low chance that the true clock is presented in the
set of candidates C, i.e. all candidates are false. Alternatively,
when P starts with a packet that belongs to the basic hopping
sequence, the true clock must appear in C. As a result, the ML
algorithm requires more packets, i.e. more listening time,
if the number of remapped packets is increased. Based on
this finding, the design of a countermeasure should consider
increasing number of remapped packets in Bluetooth traffic
to prevent passive attacker, like BlueEar, from sniffing on
Bluetooth link.

C. Fast Varying Spectrum Context

We now evaluate BlueEar in dynamic spectrum contexts
where the subchannel map of the target is modified frequently.
The transmission of AP is turned on/off every a couple
of seconds to create a fast varying spectrum context, which
causes the target to modify its subchannel map every update
period.

Fig. 11 evaluates subchannel classification accuracy based
on false positive (FP) and false negative (FN) rates.
As expected, the packet-based classifier performs the worst
because of its poor responsiveness. In comparison, the spec-
trum sensing-based classifier offers better performance when
sniffing data traffic, but fails to maintain its accuracy when
sniffing audio. This is because the spectrum sensing-based
classifier is trained offline against Broadcom devices, and it
fails to predict the adaptive hopping of the CSR devices used
in the audio test. We also observe that the hybrid classifier
performs best among the three classifiers. In particular, the FP
and FN rates are lower than 8% in both data and audio
tests. Fig. 12 further compares the packet capture rates when
BlueEar uses the three classifiers to predict adaptive hopping.
Similar with the results shown in Fig. 11, the hybrid classifier
is able to maintain the best packet capture rate, which is higher
than 90% in both data and audio tests.

ALBAZRQAOE et al.: PRACTICAL BLUETOOTH TRAFFIC SNIFFING SYSTEM 81

Fig. 11. Subchannel classification accuracy in fast varying spectrum context.
(a) Data. (b) Audio.

Fig. 12. Packet capture rate in fast varying spectrum context. (a) Data.
(b) Audio.

D. Hidden and Exposed Interference

We now evaluate the packet capture rate of BlueEar in
the presence of hidden and exposed interference. Fig. 19
evaluates the gain of selective jamming in the presence of
hidden interference, where an RF signal does not interfere with
the target, but collide with captured packets at BlueEar. The
experiments are conducted in a controlled setting where an
802.11 device generates hidden interference starting from the
100-th second. When selective jamming is enabled, BlueEar
is able to maintain high packet capture rates, despite a short
period of performance drop before the target piconet reacts
to the generated interference. In comparison, when selective
jamming is disabled, BlueEar suffers substantial performance
degradation, where the packet capture rate is reduced to about
60% from higher than 95%.

We further evaluate BlueEar in the presence of exposed
interference, where an RF signal interferes the target, but
is too weak to be measurable at the scout. Exposed inter-
ference results in significant disparity between the spectrum
contexts at BlueEar and the target. We conduct experiments
in a controlled setting where an 802.11 device is deployed
to generate exposed interference. During our experiment,
the 802.11 device keeps active, and interferes with 20 of
79 subchannels of the target piconet. Fig. 13 compares the
subchannel classification accuracy of the hybrid, the packet-
based, and the spectrum sensing-based classifiers. Different
from what we observed in Fig. 11, the spectrum sensing-based
classifier suffers high FP in both tests. This is because
spectrum sensing-based classifier relies on the interference
measurements of the scout to identify bad subchannels, which
works poorly when the interference signal cannot be detected
by the scout. In comparison, hybrid and packet-based classi-
fiers are able to maintain extremely low FP and FN rates and
high packet sniffing performance, as shown in Fig. 14.

Fig. 13. Packet capture rates in crowded spectrum. (a) Data. (b) Audio.

Fig. 14. Packet capture rates (exposed interference). (a) Data. (b) Audio.

E. Crowded Spectrum

We then evaluate the misclassification rate of the hybrid
classifier in spectrum contexts with different levels of crowd-
edness. The FPs, FNs, and overall misclassification rates are
shown in Fig. 15. We observe that the hybrid classifier main-
tains high accuracy despite the increasingly crowded spectrum.
In particular, when 50% of subchannels are bad, the overall
misclassification rate is below 8% in both data and audio tests.
Fig. 16 shows the packet capture rates measured in the same
experiment. As shown in the figure, BlueEar captures more
than 90% packets in both data and audio tests.

F. Ambient Interference

We further evaluates the performance of BlueEar in an office
building under the ambient interference from a large-scale
802.11 based WLAN. Fig. 17(a) shows the packet capture rates
measured at four randomly selected locations, where BlueEar
is deployed at 10m away from the target piconet. In all of
the four locations, the number of active 802.11 APs is higher
than 20 during our experiments. We compare BlueEar with
an existing Ubertooth-based sniffer [13] that hops following
the basic channel of the target. Because the basic hopping
sniffer is oblivious to the adaptive hopping behavior, it suffers
50% to 25% packet misses. In comparison, BlueEar is able to
maintain a packet capture rate higher than 95% at all of the
four locations.

Fig. 17(b) evaluates the packet capture rate at site D when
BlueEar is deployed at different distances from the target.
The disparity in spectrum contexts is expected to increase
as BlueEar moves away from the target. However, thanks to
the high-performance subchannel classifier, BlueEar is able to
capture more than 85% packets even when it is 27m away
from the target.

82 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 15. Subchannel classification accuracy in crowded spectrum (characterized by the percentage of bad subchannels at the target piconet). (a) No bad
subchannels. (b) 25% bad subchannels. (c) 50% bad subchannels.

Fig. 16. Subchannel classification accuracy (exposed interference). (a) Data.
(b) Audio.

VIII. IMPLICATIONS OF BLUEEAR

In this section, we discuss the privacy implications of
BlueEar in detail.

A. Implications on BLE Privacy

Although the current prototype of BlueEar is developed
for sniffing classic Bluetooth, its methodology has significant
implications on the privacy of BLE. In the following, we first
briefly introduce the hopping protocol of BLE, and elaborate
on the impacts of BlueEar on BLE privacy breach. The
hopping protocol of BLE defines a physical channel, that
hops over 37 data subchannels in the open 2.4 GHz spectrum
starting from 2.402 to 2.48 GHz. All subchannels are equally
spaced with 2 MHz of bandwidth. The connection state of
BLE can be characterized as a set of connection events.
During the initialization of a connection, the master defines (i)
connection interval –a multiple of 1.25ms ranging from 7.5ms
to 4.0s that defines the event lifetime; (ii) transmission window
size –a multiple of 1.25ms that defines the size of transmit
window, i.e. packet size; and (iii) hop increment inc –a random
value ranges from 5 to 16. The basic channel hopping is
characterized by K(c, inc), where K(.) is the hop selection
kernel, and c is the index of current subchannel. At the first
connection event, the first subchannel is defined to be zero [2],
the channel sequence repeats itself whenever subchannel zero
is visited. Similar with Bluetooth classic, BLE adopts adaptive
hopping mode, where the basic channel is modified to adapt
spectrum use in the presence of ambient interference. The
adaptive channel is defined by a subchannel map that classifies
the data subchannels into good and bad. If the basic kernel
K(c, inc) selects a bad subchannel, a remapping procedure is
invoked to calculate a remapped subchannel index. The master
maintains the subchannel map and it notifies slave(s) about any
updates [2].

Fig. 17. Packet capture rates under the ambient interference: (a) different
locations in an office building (interference of a large-scale 802.11 based
WLAN); (b) different distances.

Fig. 18. BlueEar pkt capture rates: standard and countermeasure.

The hopping protocol of BLE is different from that of
Bluetooth Classic in two aspects. First, basic channel sequence
of BLE is characterized by a random value of the hop incre-
ment inc. In contrast, basic channel sequence of Bluetooth
Classic is characterized by the piconet address. The second
difference between BLE and Bluetooth Classic is hopping
phase, which is not defined in BLE hopping protocol. Unlike
the basic channel sequence of Bluetooth Classic, which repeats
itself every about 23 hours, BLE basic sequence repeats itself
whenever subchannel zero is visited. Due to power constraints,
the hopping protocol of BLE is much simpler than that
of Bluetooth Classic, making BLE basic sequence easier to
compromise.

As BLE becomes pervasive, the privacy leakage of BLE
devices is becoming an increasing concern. Although BlueEar
is designed for Bluetooth Classic, it has significant impacts on
the privacy leakage of BLE devices, which calls for further
research to further investigate and enhance the privacy of
BLE. In particular, the key components of BlueEar system,
including subchannel classification and selective jamming, are
independent of the hopping protocol. These techniques can
be directly ported to BLE as well as other adaptive hop-
ping systems without modifications. Unfortunately, the clock
acquisition component, the hop selection subsystem, and the
packet decoder of our prototype are specifically engineered for

ALBAZRQAOE et al.: PRACTICAL BLUETOOTH TRAFFIC SNIFFING SYSTEM 83

Fig. 19. The gain of selective jamming under hidden interference.

Fig. 20. Audio quality observed by BlueEar (without countermeasure). (a)
PSNR. (b) MOS.

Bluetooth classic, which make the current version of BlueEar
incompatible with BLE.

B. Impacts on Privacy Breach

Previous research has shown the possibilities of crack-
ing Bluetooth encryption and compromising user pri-
vacy [5]–[11]. A prerequisite of these attacks is to passively
sniff Bluetooth traffic. Existing attacks [7], [8] employ pro-
hibitively expensive commodity sniffers, which limits their
widespread distribution. The BlueEar system we demonstrated
in this paper may unleash such attacks, making them a real
issue for off-the-shelf Bluetooth devices.

To further understand the impacts of BlueEar on privacy
leakage, we conduct the following two experiments. First,
we study the impacts of BlueEar when successfully eaves-
dropping on a Bluetooth data link. To quantify such privacy
leakage, we adopt the seriousness of privacy leakage model
S(P, L) = Σwi.pi.li, where pi is the privacy unit, wi is
the weight of pi, and li = 1 when pi is leaked, and
0 otherwise [30]. As data packet carries potential sensitive
information, rather than other packets, we define the compo-
nents of privacy unit based on data packets and assign their
weights as: data packet (weight=95%), and other types of
packets (weight=5%).

Fig. 22 quantifies seriousness of privacy leakage, where S
is calculated every 2 seconds based on number of packets
captured by BlueEar.

Second, we study impacts of BlueEar when eavesdropping
on audio traffic, like eavesdropping on a speech conversation,
which is known to be challenging because audio streams are
extremely sensitive to packet loss. The experiment proceeds as
follows. (i) We generate audio traffic over a Bluetooth link and
deployed BlueEar to sniff on traffic; (ii) as BlueEar collects
real-time trace, it reports packet loss rates every 2 seconds
and logs locations of missing packets; and (iii) we simulate
the audio packet stream on a PC and replayed each missing
packets with it’s preceding one.

We quantify the quality of the simulated audio stream,
which should be equivalent to the quality of the eavesdropped

Fig. 21. Audio quality as the target implements countermeasure. (a) PSNR.
(b) MOS.

Fig. 22. Seriousness of privacy leakage evaluated: (a) standard; and (b)
countermeasure.

audio, based on peak signal to noise ratio (PSNR) and mean
opinion scores (MOS). To obtain the later, we map PSNR
values into MOS, which is categorized as five voice qualities
including, excellent, good, fair, poor, and bad as proposed
in [31]. Fig. 20 evaluates audio quality based on PSNR, that
is calculated every 2 seconds, and MOS. We observe that
BlueEar maintains high audio quality, where average PSNR
is 35 and MOS scores are higher than fair in 81% of the time.

C. Practical Countermeasure

To counteract sniffing systems, like BlueEar, we propose
a practical countermeasure approach. We implement the pro-
posed countermeasure as a user-space script on Bluetooth
master and it requires no modifications to existing slaves. The
key idea of the approach is to frequently flip status of randomly
selected subchannels (good becomes bad, and vice versa).
Such random flipping interferes the subchannel classifier,
making it hard for the sniffer to learn the adaptive hopping
sequence. Thus, the sniffer experiences poor data quality.
To evaluate the effectiveness of the countermeasure, we run the
following experiment. The countermeasure randomly selects
n− 20 subchannels to be flipped, where n is the total number
of good subchannels; this complies with the FCC rule, that
requires at least 20 subchannels to be used by Bluetooth. We
wrote a user-space script that updates the subchannel map is
every 200ms. The script interacts with BlueZ –the open source
Bluetooth stack. We deploy BlueEar to eavesdrop on a data
and audio traffic as in section VIII-B.

Fig. 18 shows significant drop in packet capture rates due
to the countermeasure. Fig. 21(a) evaluates PSNR, where the
average drops to 15. Further MOS scores drop to poor in 95%
of the time, as shown in Fig. 21(b). This confirms that the
sniffer experience poor audio quality due to high packet loss
rate, which is mainly caused by the countermeasure. Similarly,
Fig. 22 evaluates seriousness of eavesdropped data packets,
where average seriousness drops to 40% in 95% of the time.

84 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

IX. CONCLUSION

This paper presents BlueEar, the first Bluetooth packet
sniffer that only uses inexpensive, Bluetooth-compliant radios.
BlueEar features a dual-radio architecture, where two radios
are coordinated by a suite of novel algorithms to eavesdrop
on an indiscoverable Bluetooth device, relieving the need of
expensive specialized radios adopted by commodity sniffers.
Extensive experiments show that BlueEar can maintain a high
packet capture rate higher than 90% in dynamic settings.
We discuss the privacy implications of BlueEar, and propose
a practical countermeasure that can reduce the packet capture
rate of the sniffer to 20%.

REFERENCES

[1] W. Albazrqaoe, J. Huang, and G. Xing, “Practical Bluetooth traffic
sniffing: Systems and privacy implications,” in Proc. 14th ACM Annu.
Int. Conf. Mobile Syst., Appl., Services (MobiSys), 2016, pp. 333–345.

[2] Bluetooth Technology. Accessed: Aug. 6, 2017. [Online]. Available:
https://www.bluetooth.com

[3] Android Auto. Accessed: Aug. 6, 2017. [Online]. Available: https://www.
android.com/auto

[4] Apple CarPlay. Accessed: Aug. 8, 2017. [Online]. Available:
http://www.apple.com/ios/carplay

[5] B. Zhang, C. Xu, and D. Feng, “Real time cryptanalysis of Blue-
tooth encryption with condition masking,” in Advances in Cryptology—
CRYPTO, R. Canetti and J. A. Garay, Eds. Berlin, Germany: Springer,
2013.

[6] B. Zhang, C. Xu, and D. Feng, “Practical cryptanalysis of Blue-
tooth encryption with condition masking,” J. Cryptol., vol. 31, no. 2,
pp. 394–433, Apr. 2017, doi: 10.1007/s00145-017-9260-1.

[7] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering
privacy leakage in BLE network traffic of wearable fitness trackers,” in
Proc. 17th ACM Int. Workshop Mobile Comput. Syst. Appl. (HotMobile),
2016, pp. 99–104.

[8] X. Pan et al., “How privacy leaks from Bluetooth mouse?” in Proc.
ACM Conf. Comput. Commun. Secur. (CCS), 2012, pp. 1013–1015.

[9] J. Padgette et al., “Guide to Bluetooth security,” Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Tech. Rep. 800-121 Rev 2, 2017,
doi: 10.6028/NIST.SP.800-121r2.

[10] Y. Qu and P. Chan, “Assessing vulnerabilities in Bluetooth low energy
(BLE) wireless network based IoT systems,” in Proc. IEEE 2nd Int.
Conf. Big Data Secur. Cloud (BigDataSecurity), IEEE Int. Conf. High
Perform. Smart Comput. (HPSC), IEEE Int. Conf. Intell. Data Secur.
(IDS), Apr. 2016, pp. 42–48.

[11] P. Cope, J. Campbell, and T. Hayajneh, “An investigation of Bluetooth
security vulnerabilities,” in Proc. IEEE 7th Annu. Comput. Commun.
Workshop Conf. (CCWC), Jan. 2017, pp. 1–7.

[12] Frontline Test Equipments. Accessed: Feb. 10, 2015. [Online]. Available:
http://www.fte.com

[13] Ubertooth. Accessed: Jun. 5, 2017. [Online]. Available: http://
ubertooth.sourceforge.net

[14] GNU Radio. Accessed: Mar. 1, 2015. [Online]. Available: https://
gnuradio.org

[15] Ettus Research. Accessed: Jan. 11, 2015. [Online]. Available: https://
www.ettus.com

[16] D. Spill and A. Bittau, “BlueSniff: Eve meets Alice and Bluetooth,” in
Proc. 1st USENIX Workshop Offensive Technol. (WOOT). Berkeley, CA,
USA: USENIX Association, 2007, pp. 1–10.

[17] M. Ryan, “Bluetooth: With low energy comes low security,” in Proc.
7th USENIX Conf. Offensive Technol. (WOOT), Berkeley, CA, USA:
USENIX Association, 2013, pp. 1–7.

[18] Adafruit. Bluefruit LE Sniffer. Accessed: Jan. 8, 2016. [Online]. Avail-
able: https://www.adafruit.com/products/2269

[19] Sniffer Firmware of CC2540. Accessed: Jan. 8, 2016. [Online]. Avail-
able: https://e2e.ti.com/support/wireless_connectivity/f/538/t/197748

[20] M. Moser. Busting the Bluetooth Myth—Getting Raw Access. Accessed:
Oct. 12, 2017. [Online]. Available: http://goo.gl/8qNjwM

[21] Logitech. Logitech Advanced 2.4 GHz Technology. Accessed:
Feb. 10, 2016. [Online]. Available: http://goo.gl/svJ2g9

[22] S. Gollakota, F. Adib, D. Katabi, and S. Seshan, “Clearing the RF smog:
Making 802.11n robust to cross-technology interference,” in Proc. ACM
SIGCOMM Conf. (SIGCOMM), 2011, pp. 170–181.

[23] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-Fi
interference in low power Zigbee networks,” in Proc. 8th ACM Conf.
Embedded Netw. Sensor Syst., 2010, pp. 309–322.

[24] Y. Yubo et al., “ZIMO: Building cross-technology MIMO to harmonize
Zigbee smog with WiFi flash without intervention,” in Proc. ACM 19th
Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2013, pp. 465–476.

[25] J. Huang, G. Xing, G. Zhou, and R. Zhou, “Beyond co-existence:
Exploiting WiFi white space for Zigbee performance assurance,” in Proc.
18th IEEE Int. Conf. Netw. Protocols (ICNP), Oct. 2010, pp. 305–314.

[26] M. Song, S. Shetty, and D. Gopalpet, “Coexistence of IEEE 802.11b
and Bluetooth: An integrated performance analysis,” Mobile Netw. Appl.,
vol. 12, nos. 5–6, pp. 450–459, Dec. 2007.

[27] A. Cidon, K. Nagaraj, S. Katti, and P. Viswanath, “Flashback: Decoupled
lightweight wireless control,” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Architectures, Protocols Comput. Commun. (SIGCOMM),
2012, pp. 223–234.

[28] J. Huang, W. Albazrqaoe, and G. Xing, “BlueID: A practical system
for Bluetooth device identification,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2014, pp. 2849–2857.

[29] T. Joachims, “Making large-scale SVM learning practical,” in
Advances in Kernel Methods: Support Vector Learning, B. Schölkopf,
C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT Press,
1999.

[30] N. Cheng, X. O. Wang, W. Cheng, P. Mohapatra, and A. Seneviratne,
“Characterizing privacy leakage of public WiFi networks for users on
travel,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 2769–2777.

[31] A.-N. Moldovan, I. Ghergulescu, and C. H. Muntean, “A novel method-
ology for mapping objective video quality metrics to the subjective
MOS scale,” in Proc. IEEE Int. Symp. Broadband Multimedia Syst.
Broadcast. (BMSB), Jun. 2014, pp. 1–7.

Wahhab Albazrqaoe received the B.S. degree in
computer and software engineering from the Uni-
versity of Technology, Baghdad, Iraq, in 2002, and
the M.S. and Ph.D. degrees from the Department of
Computer Science and Engineering, Michigan State
University, East Lansing, MI, USA, in 2011 and
2018, respectively.

He is currently with the College of Engineering,
University of Kufa, Najaf, Iraq.

His research interests include wireless net-
works, mobile systems wireless security/privacy, and

autonomous vehicles networks.

Jun Huang received the B.S. and M.S. degrees in
computer science from Beihang University, China, in
2005 and 2008, respectively, and the Ph.D. degree
in computer science and engineering from Michigan
State University in 2013. He is currently an Assistant
Professor with the Center for Energy Efficient Com-
puting and Applications, School of EEC, Peking
University. His research interests include wireless
nets and mobile systems. He received the Best Paper
Awards at the 18th IEEE International Conference
on Network Protocols in 2010.

Guoliang Xing received the B.S. degree in electrical
engineering and the M.S. degree in computer science
from Xi’an Jiaotong University, China, in 1998 and
2001, respectively, and the M.S. and D.Sc. degrees in
computer science and engineering from Washington
University in St. Louis in 2003 and 2006, respec-
tively.

He is currently a Professor with the Department of
Information Engineering, The Chinese University of
Hong Kong. Previously, he was a Faculty Member
at the City University of Hong Kong and Michigan

State University, East Lansing, MI, USA.
His research lies at the intersection between systems, embedded AI,

data/information processing algorithms, and domain sciences, with a focus
on interdisciplinary applications in health, environment, and energy.

Dr. Xing received the Faculty Early Career Development (CAREER)
Award from the US National Science Foundation in 2010 and the Withrow
Distinguished Scholar Award from the Michigan State University in 2014. His
group received two Best Paper Awards and five Best Paper Nominations from
the prestigious international conferences, including ICNP, IPSN, and PerCom.

http://dx.doi.org/10.1007/s00145-017-9260-1
http://dx.doi.org/10.6028/NIST.SP.800-121r2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

